List 20.2.1. Recommended programming strategies to reduce complexity

 Short Ruby scripts solve common tasks. Avoid writing long scripts
 Adding classes increases complexity. Do not create new object classes unless they reduce the complexity of your class library
 Avoid creating polymorphic methods or over-riding existing class methods
 Never use Mixins as a work-around to multi-class inheritance. Mixins are properly used as a source of methods and constants protected by a namespace. Do not create classes within modules.
 Model Ruby classes along the same principles as biological classifications, not as complex ontologies. Ruby classes should conform to natural laws of classification. When creating subclasses, use the same criteria for assigning subclasses as those used by naturalists to classify living organisms. All members of a subclass should be bona fide members of the ancestor class, not simply a class of objects that happen to share the instance methods available to the ancestor class.
 Whenever possible, rely on the built-in in Ruby classes and modules in your scripts

Serialize persistent data structures with built-in Ruby methods (e.g., YAML). Avoid using external databases to serialize persistent data structures.
 Use comment lines and RDoc to fully document your class libraries
 Write command-line programs. Avoid writing graphic user interfaces for your scripts.
 Choose names that describe the object represented by the name. Avoid using names such as "Class1", "method5", and "foo".
 Write scripts that have a specific, well-described and easily understood purpose. Avoid multi-purpose scripts.
 Ensure that your scripts are sufficiently fast for their intended purposes.
 If at all possible, create new scripts from pre-existing working scripts.
