List 1.6.1. Common errors in Perl scripts.

 Perl blocks must be balanced with curly brackets. Every

 block (e.g., while, if, for, unless, foreach) must have a

 beginning curly bracket,"{" and a balanced closing curly

 bracket, "}". This can become hairy in scripts that have

 multi-nested blocks.

 Command lines must end with a semicolon.

 String variables must be pre-pended with a "$", as in, $date.

 Spelling is important. Perl cannot interpret a misspelled

 command or variable.

 An uppercase character has a different ascii value than its

 lowercase equivalent. You will need to maintain case

 consistency in your Perl scripts.

 Characters that serve as reserved Perl symbols must be

 "escaped" (preceded by a backslash) if they are used as

 string characters. For example, use \. \/ \\ \$ if you want

 to use ./\ or $ as characters. There are exceptions to this

 rule: \n,\d, \w are reserved symbols and never refer to the

 letters, n,d, and w. The strange and non-intuitive use of

 backslashes in Perl takes some mental adjustment and

 accounts for the "leaning toothpick syndrome" in Perl

 scripts. Complex regular expressions often resemble

 toothpicks tossed amidst string characters.

 Certain operations must be enclosed by parentheses (e.g., if

 (1 == 2), not (if 1 == 2).

 The "=" operator assigns a value and does not test for

 equality. To test for equality, use "==" if you are

 comparing two numbers and use "eq" if you are comparing two

 strings. Remember that string comparison operators (eq, ne,

 lt, gt) are different from number comparison operators (==,

 >, <).

 Regex operations are preceded by a "=~" operator, not by the

 assignment operator, "=" (discussed in next section)

