
2.1 Elements of a Visual Basic Application

2.2 Getting Started in Visual Basic

2.3 Adding an Event Procedure

2.4 Adding Controls

2.5 Adding Additional Event Procedures

2.6 Focus on Program Design and Implementation:
Creating a Main Menu

2.7 Knowing About: The Help Facility

2.8 Common Programming Errors and Problems

2.9 Chapter Review

Introduction to Visual
Basic .NET

G
oals

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 45

46 | Chapter 2: Introduction to Visual Basic .NET

In this chapter we begin learning about the fundamentals of programming and Visual
Basic .NET. First we examine the two elements that are required by every practical
Visual Basic program: the screens and instructions seen by the user, and the “behind the
scenes” processing that is done by the program. We then present the basic design win-
dows that you must be familiar with to produce such programs. Finally, we show you
how to use these design windows to create the visual user interface, or GUI, and then
add processing instructions.

2.1 Elements of a Visual Basic Application

Visual Basic was initially introduced in 1991 as the first programming language that
directly supported programmable graphical user interfaces using language-supplied
objects. From that time until 2002, there were five other versions released, each version
having features that increased the power of the language. In 2001, Microsoft released
the .NET (pronounced “dot net”) platform. Visual Basic .NET, or VB.NET, is an upgrade
to the last version of VB (version 6.0) that conforms to the .NET platform. As you will
see in subsequent chapters, the changes in VB.NET allow programmers to write Web or
desk-top applications within the same language. In addition, VB.NET is fully object-ori-
ented as opposed to prior versions that had many, but not all, of the elements of an
object-oriented language. This book is based on VB.NET. In the balance of the book we
will sometimes refer to Visual Basic as VB, omitting .NET.

From a programming viewpoint, Visual Basic is an object-oriented language that con-
sists of two fundamental parts: a visual part and a language part. The visual part of the
language consists of a set of objects, while the language part consists of a high-level pro-
cedural programming language. These two elements of the language are used together to
create applications. An application is simply a Visual Basic program that can be run under
the Windows operating system. The term application is preferred to the term program for
two reasons: one, it is the term selected by Microsoft to designate any program that can be
run under its Windows Operating System (all versions) and two, it is used to avoid confu-
sion with older procedural programs that consisted entirely of only a language element.
Thus, for our purposes we can express the elements of a Visual Basic application as:

Visual Basic Application = Object-Based Visual Part +
Procedural-Based Language Part

Thus, learning to create Visual Basic applications requires being very familiar with
both elements, visual and language.

The Visual Element

From a user’s standpoint, the visual part of an application is provided within a window.
This is the graphical interface that allows the user to see the input and output provided

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 46

2.1 Elements of a Visual Basic Application | 47

Figure 2–1 A User’s View of an Application

Figure 2–2 The Design Form on which Figure 2–1 is Based

by the application. This user interface is referred to as the graphical user interface (GUI).
From a programmer’s perspective the GUI is constructed by placing a set of visual
objects on a blank window, or form, when the program is being developed. For exam-
ple, consider Figure 2–1, which shows how a particular application would look to the
user. From a programmer’s viewpoint, the application shown in Figure 2–1 is based on
the design form shown in Figure 2–2. The points displayed on the form are a design grid
used to arrange objects on the form and are only displayed during design time.

Design Form (Initial Form Window)

Design Window

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 47

48 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–3 The Standard Visual Basic Toolbox

The programmer can place various objects on this form, which is itself a Visual
Basic object. When an application is run, the form becomes a window that provides the
background for the various objects placed on the form by the programmer. The objects
on the window become the controls used to direct program events. Let’s take a moment
to look at the objects provided in the Visual Basic Toolbox. The standard object Tool-
box, which is illustrated in Figure 2–3, contains the objects we will use in constructing
each graphical user interface.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 48

2.1 Elements of a Visual Basic Application | 49

Table 2-1 Fundamental Object Types and Their Uses

Object Type Use

Label Create text that a user cannot directly change.
TextBox Enter or display data.
Button Initiate an action, such as a display or calculation.
CheckBox Select one option from two mutually exclusive options.
RadioButton Select one option from a group of mutually exclusive options.
ListBox Display a list of items from which one can be selected.
ComboBox Display a list of items from which one can be selected, as well as

permit users to type the value of the desired item.
Timer Create a timer to automatically initiate program actions.
PictureBox Display text or graphics.

Programmer Notes

Forms and Controls

When an application is being designed, a form is a container upon which controls are
placed. When an application is executed, the form becomes either a window or a dialog box.
Forms can be of two types: SDI or MDI. The acronym SDI stands for Single Document Inter-
face, which means that only one window at a time can be displayed by an application. SDI
applications can have multiple windows, but a user can only view one window at a time.
The acronym MDI refers to Multiple Document Interface, which means the application con-
sists of a single “parent” or main window that can contain multiple “child” or internal win-
dows. For example, the Notepad application supplied with the Windows operating system is
an SDI application, while Excel and Access are both MDI applications.

A control is an object that can be placed on a form, and has its own set of recognized prop-
erties, methods, and events. Controls are used to receive user input, display output, and trig-
ger event procedures.

A majority of applications can be constructed using a minimal set of objects pro-
vided by the standard object Toolbox. This minimal set consists of the Label, TextBox,
and Button objects. The next set of objects that are more frequently found in applica-
tions include the CheckBox, RadioButton, ListBox, and ComboBox. Finally, the Timer
and PictureBox can be used for constructing interesting moving images across the win-
dow. Table 2–1 lists these object types and describes what each object is used for. The
remaining sections of the text will describe the use of objects in the toolbox, with spe-
cial emphasis on the four objects (Label, TextBox, Button, and ListBox) that you will use
in almost every application that you develop.

In addition to the basic set of controls provided in VB, a great number of objects can
be purchased either for special purpose applications or to enhance standard applications.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 49

50 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–4 An Event “Triggers” the Initiation of a Procedure

Don’t be overwhelmed by all of the available controls. At a minimum, you will
always have the objects provided by the standard Toolbox available to you, and these
are the ones we will be working with. Once you learn how to place the basic control
objects on a form, you will also understand how to place the additional objects, because
every object used in a Visual Basic application, whether it is selected from a standard or
purchased control, is placed on a form in the same simple manner. Similarly, each and
every object contains two basic characteristics: properties and methods.

An object’s properties define particular characteristics of the object. For example,
the properties of a text box include the location of the text box on the form, the color
of the box (the background color), the color of text that will be displayed in the box (the
foreground color), and whether it is read-only or can also be written to by the user.

Methods are predefined procedures that are supplied with the object for performing
specific tasks. For example, you can use a method to move an object to a different loca-
tion or change its size.

Additionally, each object from the Toolbox recognizes certain actions. For example,
a button recognizes when the mouse pointer is pointing to it and the left mouse button
is clicked. These types of actions are referred to as events. In our example, we would say
that the button recognizes the mouse-click event. However, once an event is activated,
we must write our own procedures to do something in response to the event. This is
where the language element of Visual Basic comes into play.

The Language Element

Before the advent of GUIs, computer programs consisted entirely of a sequence of
instructions. Programming was the process of writing these instructions in a language
to which the computer could respond. The set of instructions and rules that could be
used to construct a program were called a programming language. Frequently, the word
code was used to designate the instructions contained within a program. With the
advent of graphical user interfaces the need for code (program instructions) has not
gone away—rather, it forms the basis for responding to the events taking place on the
GUI. Figure 2–4 illustrates the interaction between an event and a program code.

As illustrated in Figure 2–4, an event, such as clicking the mouse on a button, sets
in motion a sequence of actions. If code has been written for the event, the code is exe-

An event, such as click-
ing on this button . . . causes this code to execute

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 50

2.2 Getting Started in Visual Basic | 51

cuted; otherwise the event is ignored. This is the essence of GUIs and event-driven
applications—the selection of executed code depends on what events occur, which ulti-
mately depends on what the user does. The programmer must still write the code that
performs the desired action.

Visual Basic is a high-level programming language that supports all of the proce-
dural programming features found in other modern languages. These include statements
to perform calculations, permit repetitive instruction execution, and allow selection
between two or more alternatives.

With these basics in mind, it is now time to create our first Visual Basic application.
In the next section, we introduce the Visual Basic programming environment and create
an application that uses only a single object: the form itself. We will then add addi-
tional objects and code to create a more complete Visual Basic application.

Exercises 2.1

1. List the two elements of a Visual Basic Application.

2. What is the purpose of a GUI and what elements does a user see in a GUI?

3. What does a Visual Basic toolbox provide?

4. Name and describe the four most commonly used Toolbox objects.

5. When an application is run, what does a design form become?

6. What is executed when an event occurs?

2.2 Getting Started in Visual Basic

It’s now time to begin designing and developing Visual Basic programs. To do this, you
will have to bring up the opening Visual Basic screen and understand the basic elements
of the Visual Basic development environment. Visual Studio is the integrated develop-
ment environment (IDE, pronounced as both I-D-E, and IDEE) used to create, test, and
debug projects. Developers can also use Visual Studio to create applications using lan-
guages other than Visual Basic, such as C# and Visual C++. To bring up the opening
Visual Basic screen, either click the Microsoft Visual Studio .NET icon (see Figure 2–5),
which is located within the Microsoft Visual Studio .NET Group, or, if you have a short-
cut to Visual Basic .NET on the desktop, double-click this icon.

When you first launch Visual Basic .NET, the Start Page similar to the one shown in
Figure 2–6 will appear. While this page provides links to Web pages to help developers
find useful information, we will be concerned only with the following three areas: the
central rectangle displaying recent programs, the Open Project button, and the New Pro-
ject button. Clicking on any of the recent programs causes VB.NET to retrieve the pro-
gram and load it into the IDE. Clicking the Open Project button opens a standard
Windows file dialog box permiting you to retrieve a previously saved Visual Basic pro-
gram and load it into the IDE. Clicking the New Project button opens the dialog box
shown in Figure 2–7. This dialog box provides a choice of eleven project types, shown

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 51

52 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–5 The Microsoft Visual Studio .NET Icon within the Visual Studio .NET Group

in Table 2–2. In this text, we will be concerned with Windows Applications and
ASP.NET Web Applications.

Click the New project button to open the New Project Dialog box displayed in Fig-
ure 2–7. Click the OK button to create a new project. Don’t be concerned with the Name
and Location, as the goal here is to display the IDE screen as shown in Figure 2–8

The four windows shown in Figure 2–8 are, as marked, the Toolbox window, the
Initial Form window, the Solution window, and the Properties window. Additionally,
directly under the Title bar at the top of the screen sits a Menu bar and a Toolbar, which
should not be confused with the Toolbox window. Table 2–3 lists a description of each
of these components. Before examining each of these components in depth, it will be
useful to consider the IDE as a whole and how it uses standard Windows keyboard and
mouse techniques.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 52

2.2 Getting Started in Visual Basic | 53

Figure 2–6 The Visual Basic .NET Start Page

Figure 2–7 New Project Dialog

The IDE as a Windows Workspace

The IDE consists of three main components: a GUI designer, a code editor, and a debug-
ger. In the normal course of developing a Visual Basic program, you will use each of
these components. Initially, we will work with GUI designer, which is the screen shown
in Figure 2–8. The screen is actually composed of a main “parent” window containing
multiple “child” windows.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 53

54 | Chapter 2: Introduction to Visual Basic .NET

Table 2–2 Eleven Project Types

Windows Application Class Library
Windows Control Library ASP .NET Web Application
ASP.NET Web Service Web Control Library
Console Application Windows Service
Empty Project Empty Web Project
New Project in Existing Folder

Figure 2–8 The Integrated Development Environment’s Initial Screen

Project
Window

Initial Form
Window

Properties
Window

Sizing Handle
Toolbox

Title Bar Menu Bar Tool Bar

Dynamic Help
WindowDebugging Window

Design
Window

As a Windows-based application, each child window within the overall parent win-
dow, as well as the parent window itself, can be resized and closed in the same manner
as all windows. To close a window you can double-click the X in the upper right-hand
corner of each window. Windows can be resized by first moving the mouse pointer to a
window’s border. Then, when the pointer changes to a double-headed arrow, click and
drag the border in the desired direction. You can move each window by clicking the
mouse within the window’s Title bar, and then dragging the window to the desired posi-
tion on the screen.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 54

2.2 Getting Started in Visual Basic | 55

Table 2–3 Initial Development Screen Components

Component Description

Title Bar The colored bar at the top edge of a window that contains the window
name.

Menu Bar Contains the names of the menus that can be used with the currently
active window. The menu bar can be modified, but cannot be deleted
from the screen.

Toolbar Contains icons that provide quick access to commonly used Menu Bar
commands. Clicking an icon, which is referred to as a button, carries
out the designated action represented by that button.

Layout Toolbar Contains buttons that enable you to format the layout of controls on a
form. These buttons enable you to control aligning, sizing, spacing,
centering, and ordering controls.

Toolbox Contains a set of controls that can be placed on a Form window to pro-
duce a graphical user interface (GUI).

Initial Form The form upon which controls are placed to produce a graphical user
Window interface (GUI). By default, this form becomes the first window that is

displayed when a program is executed.
Properties Lists the property settings for the selected Form or control and permits
Window changes to each setting to be made. Properties such as size, name, and

color, which are characteristics of an object, can be viewed and altered
either from an alphabetical or category listing.

Solution Displays a hierarchical list of projects and all of the items contained in a
Window project. Also referred to as both the Solution Resource Window and the

Solution Explorer.
Form Layout Provides a visual means of setting the Initial Form window’s position on
Window the screen when a program is executed.

As with any other Windows application, Visual Basic makes use of a menu bar to
provide an interface to the programmer. For example, if you wish to save a program
you have been working on and start a new one, you would choose the File item from
the menu bar, which will bring up the File submenu shown in Figure 2–9. From this
menu you can save the current project by using the Save All option, then click the New
option and click Project (Figure 2–10). The New Project dialog box appears. To access
an existing program, you can also use the menu bar File item, except you would then
click Open and click Project to reopen a previously saved program. Similarly, these two
options can also be activated by clicking the appropriate icons on the Toolbar located
immediately under the Menu bar.

Once a program has been opened, you can always use the View item on the menu
bar to display any windows that you need. For example, if either the Properties or Tool-
box windows are not visible on the development screen, select the View item from the

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 55

56 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–9 The File SubMenu

Figure 2–10 The New Project Dialog Box

menu bar. This will open the View submenu illustrated in Figure 2–11. From this sub-
menu, click the Properties Window or click Toolbox and then click a Toolbox item to
open the desired window. Note in Figure 2–11 that all Visual Basic’s windows are listed
in the View submenu.

Having examined the Menu bar and how it is used to configure the development
screen, make sure that you go back to the initial development screen shown in Figure
2–8. If any additional windows appear on the screen, close them by clicking each win-

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 56

2.2 Getting Started in Visual Basic | 57

Figure 2–11 The View SubMenu

dow’s close button (the box with the X in the upper right corner). The window does not
have to be active to do this.

Note that the caption within the top title bar of the screen shown in Figure 2–8
contains the words Microsoft Visual Basic [design]. The word [design] in the top Title
bar caption is important because it indicates that we are in the design phase of a Visual
Basic program. At any point within our development, we can run the program and see
how it will look to the user.

Once the design windows are visible, creating a Visual Basic application requires
the following three steps:

1. Create the graphical user interface (GUI).

2. Set the properties of each object on the interface.

3. Write the code.

The foundation for creating the GUI (Step 1) is the Initial Form window. It is on this
design form that we place various objects to produce the interface we want users to see
when the program is executed. When the program is run, the design form becomes a
window and the objects that we place on the design form become visual controls that
are used to input data, display output, and activate events. The objects that we can
place on the design form are contained within the Toolbox. The Toolbox drop-down list
is shown in Figure 2–12. The visual controls we will be using are under the Windows
Forms drop-down list.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 57

58 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–12 The Standard Object Toolbox

Programmer Notes

Opening the Basic Design Windows

To create a Visual Basic program, you will need the following three windows: the Toolbox
window for selecting objects, a Form window for placing objects, and a Properties window
for altering an object’s properties. Additionally, the Solution Explorer window should be vis-

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 58

2.2 Getting Started in Visual Basic | 59

ible when you begin. If any of these windows are in the background, clicking on them will
activate them and bring them to the foreground, or you may use the following procedures:

For a Form window:

For a new project, first click File from the menu bar, click New from the submenu, and click
Project (or use the hot key sequence Alt+F, then N, then P). This will open a new Form window.

For an existing project, click File from the menu bar, click Open from the submenu, and
then click Project (or use the hot key sequence Alt+ F, then O, then P). This will open a proj-
ect window. Then select the project file.

For a Toolbox window:

To either activate an existing Toolbox window or open one if it is not on the screen, do
either of the following:

• Click View and then click Toolbox.

• Use the hot key sequence Alt+V and then press the X key (Alt+V / X).

For a Properties window:

To activate an existing Properties window or open one if it is not on the screen, do one of
the following:

• Click View and then click Properties Window.

• Use the hot key sequence Alt+V, and then press the W key (Alt+V / W).

• Press the F4 function key.

For a Solution Explorer window:

To activate an existing Solutions window or open one if it is not on the screen, do one of
the following:

• Click View and then click Solution Explorer.

• Use the hot key sequence Alt+V and then press the P key (Alt+V / P).

Don’t be confused by all of the available objects. Simply realize that Visual Basic
provides a basic set of object types that can be selected to produce a graphical user
interface. The balance of this book explains what some of the more important objects
represent and how to design a Visual Basic application using them. To give you an idea
of how simple it is to design such an interface, move the mouse pointer to the Button
object in the Toolbox and double-click the Button icon. Note that a Button object
appears in the form. Placing any object from the Toolbox onto the form is this simple.
Now click the newly created button within the form and press the Delete key to
remove it.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 59

60 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–13 The Properties Window

Object
Identification
Box

The Control’s
Name

A Selected
Property

The List of
Property
Names

The List of Property Settings

An Individual Property Setting

The Control’s Object Type

Setting an Object’s Properties

As previously stated, all objects on a form have properties, which define where on the
form the object will appear (the object’s vertical and horizontal position relative to the
left-hand corner of the form), the color of the object, its size, and various other attri-
butes. To understand these properties, we will now examine the most basic object in
Visual Basic: the form. Like any other object, the Form object has properties that define
how it will appear as a screen when the program is run. As an introduction to the ease
with which properties are set, we will first explore the Form object’s properties. To do
this, you need to have a basic design screen open (see Figure 2–8).

First, click the Properties window to activate it. The Properties window, which
should appear as shown in Figure 2–13, is used for setting and viewing an object’s
properties.

The Properties window allows properties to be listed in alphabetic order, by prop-
erty name, or by property category. By default, the properties are sorted by category. To
change to property categories, click the first button on the Properties window toolbar.
To switch back to alphabetic sort, click the second button on the Properties window
toolbar. When viewed by category, individual properties are grouped according to
appearance, font, position, behavior, and so on.

No matter the order of properties selected, the first box within a Properties window
is the ObjectIdentification box, located immediately under the window’s Title bar. This
box lists the name of the object and its object type. In Figure 2–13 the name of the
object is Form1 and its type is Form.

The two columns within the Properties window are where individual object proper-
ties are identified. The column on the left is the properties list, which provides the
names of all the properties of the object named in the object box. The column to the
right is the settings list, which provides the current value assigned to the property on
the left. The currently selected property is the one that is highlighted. For example, the

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 60

2.2 Getting Started in Visual Basic | 61

Name property is highlighted in Figure 2–13. The value assigned to a highlighted prop-
erty can be changed directly in the property settings list.

Take a moment now and, using the keyboard arrows, move down through the Prop-
erties window. Observe that each property is highlighted as it is selected, and that the
description of the highlighted property is displayed in the description box at the bottom
of the window.1 Now move back up until the Name property at the top of the alphabeti-
cal list is highlighted. The name Form1 shown in the figure is the default name that
Visual Basic gives to the first Form object provided for a new program. If a second form
were used, it would be given the default name Form2, the third form would be named
Form3, and so on.

The Name Property There is nothing inherently wrong with keeping the default name
that Visual Basic provides for each Form object that you use. However, good
programming practice requires that all Form and other object names be more
descriptive and convey some idea about what the object is used for. The names that are
allowed for all objects, of which a Form is one, are also used to name other elements in
the Visual Basic programming language and are collectively referred to as identifiers.
Identifiers can be made up of any combination of letters, digits, or underscores (_)
selected according to the following rules:

1. The first character of an identifier must be a letter.

2. Only letters, digits, or underscores may follow the initial letter. Blank spaces, special
characters, and punctuation marks are not allowed. Use the underscore or capital
letters to separate words in an identifier consisting of multiple words.

3. An identifier can be no longer than 1016 characters.

4. An identifier cannot be a keyword. (A keyword is a word that is set aside by the
language for a special purpose.)2

Using these rules, development teams may then use whatever naming conventions they
choose. In this book, form names begin with frm and our first form will always be
given the name frmMain. To assign this name to our current form, do the following: if
the name property is not already highlighted, click the name property and change the
name to frmMain by directly typing in the settings list to the right of the Name prop-
erty. The name change takes effect when you either press the Enter key, move to
another property, or activate another object.

1The description box can be toggled on or off by clicking the right mouse button from within the Properties
window.
2More specifically, an identifier cannot be a restricted keyword. A restricted keyword is a word that is set aside
by the language for a specific purpose and can only be used in a specified manner. Examples of such words
are If, Else, and Loop. Other languages refer to such words as reserved words. Use the Help Facility and search
for “Word Choice” to find a table of keywords.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 61

62 | Chapter 2: Introduction to Visual Basic .NET

Programmer Notes

The Properties Window

The Properties window is where you set an object’s initial properties. These are the proper-
ties that the object will exhibit when the application is first run. These properties can be
altered later, using procedural code.

To Activate the Properties Window:

To activate a particular object’s Properties window, first click the object to select it and then
press the F4 function key. You can also click View and then click Properties Window (or use
the hot-key sequence Alt+V, then W). This will activate the Properties window for the cur-
rently active object. Once the Properties window is active, clicking the down-facing arrow-
head to the right of the object identification box will activate a drop-down list that can be
used to select any object on the form, including the form itself.

To Move to a Specific Property:

First, make sure that the Properties window is active. You can then cursor up or down
through the properties by using the up and down arrow keys or by simply clicking the
desired property with the mouse.

The Text Property A form’s name property is important to the programmer when
developing an application. However, it is the form’s Text property that is important to
the user when a program is run, because it is the Text property that the user sees within
the window’s Title bar when an application is executing.

To change the Text property, select it from the Properties window. To do this, make
sure the Properties window is selected and use the arrow keys to position the cursor on
the Text property. Now change the caption to read:

The Hello Application - Version 1 (pgm2-1).

If the caption is larger than the space shown in the settings box, as is shown in Fig-
ure 2–14, the text will scroll as you type it in. When you have changed the text, the
design screen should appear as shown in Figure 2–14.

Before leaving the Properties window to run our application, let’s take a moment to
see how properties that have restricted values can also be changed.

We changed both the Name and Text properties by simply typing new values. Cer-
tain properties have a fixed set of available values. For example, the Cursor property,
which determines the type of cursor that will appear when the program runs, can be
selected from a list of defined cursors. Similarly, the Font property, which determines
the type of font used for an object’s displayed text can only be selected from a list of
available fonts. Likewise, the BackColor and ForeColor properties, which determine the
background color and the color of text displayed in the foreground, can only be selected

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 62

2.2 Getting Started in Visual Basic | 63

Figure 2–14 The Design Screen after the Text Property Change

from a predefined palette of colors. When one of these properties is selected, either a
down-facing arrowhead property button (�) or an ellipses (...) property button will
appear to the right of the selected setting. Clicking this button will show you the avail-
able settings. You can then make a selection by clicking the desired value. In the case of
colors, a palette of available colors is displayed, and clicking on a color sets the numeri-
cal code for the chosen color as the property’s value.

The Solution Explorer Window Although Visual Basic was initially designed as a tool
to build smaller desktop applications, it has expanded in scope to allow for the
construction of enterprise-wide systems. To support this capability, Visual Basic .NET
has adopted a more complex, but logical, way to associate different elements of an
application. At the top level is a solution file. A solution consists of a set of projects.
Only in cases of a complex application will there be more than one project. For all
examples and assignments in this book, there will be only one project. A project
consists of all the programming components we write. We have just seen one of these
components: a form. There are many others that we can use to build an application. All
of these components are associated together under the project.

The Solution Explorer window displays a hierarchical list of projects and compo-
nents contained in a project, as shown in Figure 2–15. As files are added or removed
from a project, Visual Basic reflects all of your changes within the displayed hierarchi-
cal tree.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 63

64 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–15 Solution Explorer Window

The hierarchical tree uses the same folder tree structure found in Windows, which
means that you can expand and contract tree sections by clicking on the plus (+) and
minus (�) symbols, respectively. As always, sections of the tree that are hidden from
view due to the size of the window can be displayed using the attached scroll bars.

The Solution Explorer window is extremely useful in providing a visual picture of
the project files and in providing a rapid means of accessing, copying, and deleting files
associated with a project. For example, if a Form object is not displayed on the design
screen, you can make it visible by double-clicking the desired Form object from within
the hierarchical tree. In a similar manner, you can expand a folder or bring up both
code and visible objects by clicking one of the five icons shown in Figure 2–15. Two
further items relating to the Solution Explorer window are worth noting. First, Visual
Basic assigns default names to solutions (Solution1), projects (Project1), and forms
(Form1). These names can be changed by selecting the solution, project, or form with
the Solution Explorer and right-clicking to open a menu. Select the Rename menu
option and enter the new name.

Second, it is worth noting that the first two items in the View submenu, Code and
Object, have icons identical to those displayed in the Solution Explorer window shown
in Figure 2–15. Thus, both code and objects can be displayed by using either the View
submenu or the Solution Explorer window.

Running an Application

At any time during program development, you can run your program using one of the
following three methods:

1. Select the Debug Menu and click Start.

2. Press the F5 function key.

3. Use the hot key sequence Alt+D, then press the S key.

If you do this now for Program 2–1, the program will appear as shown in Figure 2–16.
Before doing so, change the Name property of the Form back to Form1. (You had
changed it to frmMain.) We will explain later why this is necessary.

Notice that when the program is run, the form becomes a standard window. Thus,
even though we have not placed any objects on our form or added any code to our pro-

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 64

2.2 Getting Started in Visual Basic | 65

Figure 2–16 The Form as a Window When the Application is Run

gram, we can manipulate the window using standard window techniques. For example,
you can click the Maximize or Minimize buttons, move or resize the window, and close
the application by double-clicking the Close (X) button.

A useful feature of Visual Basic is that you can run your program at any point
within its development process. This permits you to check both the look of the graphical
user interface and the operation of any code that you write while the program is being
developed, rather than at the end of the design process. As you write more involved
programs, it is a good idea to get into the habit of checking program features as they
are added by running the program.

To clearly distinguish between when a program is being developed and when it is
being executed, Visual Basic uses the terms design time and run time. Design time is
defined as the time when a Visual Basic application is being developed. During design
time, objects are placed on a form, their initial properties are set, and program code is
written. Run time is defined as the time a program is running. During run time, each
form becomes a window, and the windows and controls respond to events, such as a
mouse-click, by invoking the appropriate procedural code. Run time can be initiated
directly from design time by pressing the F5 function key (or any of the other methods
listed in the accompanying Programmer Notes on Running an Application). Although in
this section we have changed object properties in design time, we will see in Section 2.4
that an object’s properties can also be changed at run time.

Saving and Recalling a Project

In the next section, we will add three Button objects and one Text box to our form.
Then, in Section 2.4, we will complete our application by adding program code. Before
doing so, let’s make sure that you can save and then retrieve the work we have com-
pleted so far.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 65

66 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–17 The Open Solution Dialog Box

Programmer Notes

Running an Application

While creating a Visual Basic application, you can run the application at any time using one
of the following procedures:

1. Select the Debug Menu and select Start.

2. Use the hot key sequence Alt+D, then press the S key (Alt+D / S).

3. Press the F5 function key.

Unlike our current program which consists of a single form, a program can consist of
many forms, additional code modules containing program code, and third-party sup-
plied objects. A form contains the data for a single Form object, information for each
object placed on the form (in this case there are none), all event code related to these
objects, and any general code related to the form as a whole. A code module contains
procedural code (no objects) that will be shared between two or more forms. It is for this
reason that a separate project file, with its own name, is used. The project file keeps
track of all forms, and any additional code and object modules.

To save an application, first click the File menu and then click Save All. At this
point all the forms, code modules and ancillary files will be saved in a folder. The name
of the folder will be the project name. You can also click the SaveAll icon in the Stan-
dard Toolbar (see Figure 2–17). It is recommended that you save your solution often to
prevent accidental loss of work.

To retrieve a project, select Open Solution from the File menu, at which point an
Open Solution dialog box similar to the one shown in Figure 2–17 is displayed. Select
the folder with the correct solution name. A second file dialog box will appear. Within

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 66

2.2 Getting Started in Visual Basic | 67

Figure 2–18 Visual Basic’s Standard Toolbar

New Project Save All Copy Undo Redo Solution Explorer Toolbox

All New Item Cut Paste Properties Window

this dialog box a file with the project name and a file type of Visual Studio Solution
will appear. After this file is selected, the forms that comprise your project will reappear.

Using the Toolbar

Once you have become comfortable with the menu bar items and see how they operate
and interconnect, you should take a closer look at the Standard Toolbar. For the most
commonly used features of Visual Basic, such as opening a solution file, saving a solu-
tion, and running or stopping an application, click on the appropriate toolbar icon to
perform the desired operation. Figure 2–18 illustrates the Standard Toolbar and identi-
fies the icons that you will use as you progress in designing Visual Basic applications. To
make sure the Standard Toolbar is visible, select the Toolbar item from the View menu.
When this item is selected, a menu listing the available toolbars is displayed. Make sure
that a check mark (v) appears to the left of the Standard item. The most useful Standard
Toolbar buttons are represented by the Save All, Start, and Stop Debugging icons.

Exercises 2.2

1. Describe the difference between design time and run time.
2. a. Name the three windows that should be visible during an application’s design.

b. What are the steps for opening each of the windows listed in your answer to
Exercise 2a?

c. In addition to the three basic design windows, what two additional windows may
also be visible on the design screen?

3. What two Form properties should be changed for every application?
4. What does a form become during run time?
5. List the steps for creating a Visual Basic application.
6. Determine the number of properties that a Form object has. (Hint: Activate a form’s

property window and count the properties.)
7. a. Design a Visual Basic application that consists of a single form with the heading

Test Form. The form should not have a minimize button nor a maximize button,
but should contain a close control button. (Hint: Locate these properties in the
Properties window and change their values from True to False.)

b. Run the application you designed in Exercise 7a.
8. By looking at the screen, how can you tell the difference between design time and

run time?

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 67

68 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–19 The Structure of an Event Procedure

Required
keyword

The object with which this procedure is associated
Optional underscore character

Required keyword

Visual Basic statements here

The event that invokes this procedure (optional)

Optional
keyword

Required object & event

Required last lineEnd Sub

The header line Private Sub ObjectName_event(system parameters) Handles ObjectName_event

2.3 Adding an Event Procedure

In the previous section, we completed the first two steps required in constructing a
Visual Basic application:

1. Create the GUI.

2. Set initial object properties.

Now we will finish the application by completing the third step:

3. Adding procedural code.

At this point our simple application, pgm2-1, produces a blank window when it is
executed. If you then click anywhere on the window, nothing happens. This is because
no event procedures have been included for the form. We will complete the application
by providing a mouse click event procedure that displays a message whenever the appli-
cation is running and the mouse is clicked anywhere on the application’s window.

In a well-designed program, each procedure will consist of a set of instructions nec-
essary to complete a well-defined task. Although a procedure can be initiated in a vari-
ety of ways, a procedure that is executed (called into action, or invoked) when an event
occurs is referred to as an event procedure or event handler. The general structure of an
event procedure is illustrated in Figure 2–19.

The first line of a procedure is always a header line. A header line begins with the
optional keyword Private3 and must contain the keyword Sub (which derives from the
word Subprogram), the name of the procedure, and a set of parentheses. For event pro-
cedures, the name consists of an object identification, an optional underscore character
(_), a valid event for the object, the parameters in parentheses, the keyword Handles fol-
lowed by the object identification, an underscore character, and a valid event. If the
object is the form itself, the object name Form is used. For example, the header line

Private Sub Form1_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles MyBase.Click

3The significance of the keyword Private is explained in Chapter 7.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 68

2.3 Adding an Event Procedure | 69

Figure 2–20 The Code Window, Showing a Click Event Procedure Template

denotes an event procedure that will be activated when the mouse is clicked on the
form. The values between the parentheses are used for transmitting data to and from the
procedure when it is invoked. Data transmitted in this fashion are referred to as argu-
ments of the procedure. Note that for forms, the object identification after the Handles
keyword is MyBase, while for controls on the form the object identification is the name
of the control (e.g., txtBox1). The last line of each procedure consists of the keywords
End Sub. Finally, all statements from the header line up to and including the terminat-
ing End Sub statement are collectively referred to as the procedure’s body.

For a form’s mouse click event, the required procedure’s structure is:

Private Sub Form1_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles MyBase.Click

' Visual Basic statements in here
End Sub

The first and last lines of a procedure, consisting of the header line and terminating
body line End Sub, are referred to as the procedure’s template. Note that if the form is
named frmMain, the procedure is named frmMain_Click. As shown in Figure 2–20,
event procedure templates need not be manually typed because they are automatically
provided in Visual Basic’s Code window.

Before activating the Code window, we need to decide what Visual Basic statements
will be included in the body of our event procedure. In this section, we present an easy
way for displaying an output message—the MessageBox.Show method.

The MessageBox.Show Method4

Visual Basic provides a number of built-in methods in addition to methods for con-
structing event procedures. The MessageBox.Show method is used to display a box with
a user-supplied message inside. The message box also contains a title and an icon. For
example, the boxes illustrated in the next several figures all were created using the

4In previous versions of Visual Basic, the MsgBox function was used to display a message box. Although this
function may still be used, the MessageBox class replaces this function with MessageBox.Show as the method
used to display a message box.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 69

70 | Chapter 2: Introduction to Visual Basic .NET

MessageBox.Show method. The MessageBox.Show method has the following general
formats:

MessageBox.Show(text)
MessageBox.Show(text, caption)
MessageBox.Show(text, caption, buttons)
MessageBox.Show(text, caption, buttons, icon)
MessageBox.Show(text, caption, buttons, icon, defaultbutton)

Messages, such as those displayed in message boxes, are called strings in Visual
Basic. A string consists of a group of characters made up of letters, numbers, and special
characters, such as the exclamation point. The beginning and end of a string of charac-
ters are marked by double quotes (“string in here”).5 The argument text appears in the
message box window and it may be a literal string enclosed in quotes or a string vari-
able. The string caption is displayed in the message box’s title bar. If caption is not
specified, as in the preceding form, the title bar is empty. Figure 2–21 shows the mes-
sage box displayed as a result of the following statement:

MessageBox.Show("This is the text")

This is the simplest form of the message box. Figure 2–22 displays a message from
the following statement, which includes a title (caption):

MessageBox.Show("This is the text", "This is the caption")

The word buttons specifies the types of buttons that are displayed. The value for
buttons can be one of the following:

MessageBoxButtons.AbortRetryIgnore
MessageBoxButtons.OK
MessageBoxButtons.OKCancel
MessageBoxButtons.RetryCancel
MessageBoxButtons.YesNo
MessageBoxButtons.YesNoCancel

If the value is MessageBoxButtons.AbortRetryIgnore, then the Abort, Retry, and
Ignore buttons are all displayed in the message box. The string following the period
indicates which buttons are displayed (e.g., Yes and No for YesNo). If this argument is
not specified, the OK button is displayed as shown in the previous two figures. The fol-
lowing statement displays a message box with two buttons, as shown in Figure 2–23.

MessageBox.Show("Are you sure you want to delete the record?", _
"Customer Records", MessageBoxButtons.YesNo)

5Strings are discussed in detail in Chapter 3.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 70

2.3 Adding an Event Procedure | 71

Figure 2–22 A Message Box with Title Figure 2–23 A Message Box with Title
and Yes/No Buttons

Figure 2–21 A Simple Message Box

Table 2–4 MessageBox.Show Icons

Values for Icon Icon

MessageBoxIcon.Asterisk The Letter i
MessageBoxIcon.Information The Letter i

MessageBoxIcon.Error The Letter X
MessageBoxIcon.Hand The Letter X
MessageBoxIcon.Stop The Letter X

MessageBoxIcon.Exclamation Exclamation Point
MessageBoxIcon.Warning Exclamation Point

MessageBoxIcon.Question Question Mark

Table 2–4 lists the values for the icon argument and shows what the icons look
like. Note that some values display the same icon as other values. An icon is displayed
to the left of the message.

For example, the statements:

MessageBox.Show("Record has been deleted.", "Customer Records", _
MessageBoxButtons.OK, MessageBoxIcon.Information)

MessageBox.Show("Data entered is invalid. Try Again", "Invalid Data", _
MessageBoxButtons.OK, MessageBoxIcon.Warning)

produced the message boxes shown in Figures 2–24 and 2–25. These message boxes
include an information icon.

The information icons (Asterisk and Information) should be used when you are dis-
playing an information message box with only an OK button. The stop icons (Error,
Hand, and Stop) should be used when the message displayed is indicating a serious

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 71

72 | Chapter 2: Introduction to Visual Basic .NET

Figures 2–24 and 2–25 Message Boxes with Title, OK Button, and Information Icon

problem that needs to be corrected before the program can continue. The exclamation
icons (Exclamation and Warning) should be used when the user must make a decision
before the program can continue; this would not be used with only an OK button. The
question icon can be used when a question needs to be answered.

The last optional argument to the MessageBox.Show method, as shown in the fifth
format above, is the defaultbutton. This argument specifies which button to select as
the default button, as there may be three buttons displayed in the message box (e.g.,
Yes, No, Cancel). The default button is the button that has focus when the message box
is displayed, and is the button that is clicked when the user presses the Enter key. If this
argument is not specified, the default is that the leftmost button is the default. The val-
ues for this argument are:

MessageBoxDefaultButton.Button1
MessageBoxDefaultButton.Button2
MessageBoxDefaultButton.Button3

where MessageBoxDefaultButton.Button1 specifies the leftmost button (and is the
default), MessageBoxDefaultButton.Button2 specifies the second button from the
left, and MessageBoxDefaultButton.Button3 specifies the third button from the left.

After the user clicks on a button in the message box, the message box is closed. The
return value of the call to the MessageBox.Show method indicates which button the
user clicked. This is useful in code to determine what action to take. The return values
may be one of the following:

DialogResult.Abort
DialogResult.Cancel
DialogResult.Ignore
DialogResult.No
DialogResult.OK
DialogResult.Retry
DialogResult.Yes

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 72

2.3 Adding an Event Procedure | 73

Figure 2–26 A Message Box with Default Button Argument Changed

The following code gives an example of how the return value may be used:

Dim msgresult as Integer

msgresult = MessageBox.Show("Press OK to Delete", "Confirm Delete", _
MessageBoxButtons.OKCancel, MessageBoxIcon.Stop, _
MessageBoxDefaultButton.Button2)

If msgresult = DialogResult.OK Then
. . .

Figure 2–26 shows the message box that is displayed by this call to MessageBox.Show.
It is important to note that, in this example, the second button, Cancel, is the default
button. The user has to move focus to the OK button to confirm the deletion. If the OK
button is clicked, the return value is DialogResult.OK.

The message boxes shown are all special cases of a more general type of box
referred to as a dialog box. A dialog box is any box that appears which requires the user
to supply additional information to complete a task. In the case of the message boxes
illustrated in this section, the required additional information is simply that the user
must either click the OK box or press the Enter key to permit the application to continue.

Now let’s include a MessageBox.Show method on our form so that the statement
will be executed when the mouse is clicked. The required procedure is:

Private Sub Form1_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles MyBase.Click

MessageBox.Show("Hello World!", "Sample")
End Sub

To enter this code, first make sure that you are in design mode and have a form named
Form1 showing on the screen, as illustrated in Figure 2–27.

To open the Code window, do any one of the following:

• If the Code window is visible, click on it.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 73

74 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–27 The Form1 Form in Design Time

Figure 2–28 The Code Window

Selected Object Procedure Identification Box

Selected Procedure

• Double-click anywhere on the Form window.
• Select the Code option from the View menu.
• Press the F7 method key anywhere on the design form.
• Select the View Code icon from the Project Window.

Any of these actions will open the Code window shown in Figure 2–28.
The class drop-down should display Form1 and the method drop-down should display

Form1_Load. This indicates that the current class is Form1 and the method is Load, which in
this case is an event. Note that a code stub (template) for the Form1_Load procedure is auto-

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 74

2.3 Adding an Event Procedure | 75

Figure 2–29 The List of Events Associated With a Form

matically supplied within the Code window. Note, too, that the Code window displays all pro-
cedures and declarations that have been written, with each procedure separated by a line.
When the Code window is not large enough to display either all procedures or even all of a
single procedure, the scroll bars can be used to bring sections of code within the visible win-
dow area.

When you have the Code window shown in Figure 2–28 visible, click the down
arrowhead (�) to the right of the selected class box. Then select (Base Class Events).
Click the down-facing arrowhead in the method box. This produces the window shown
in Figure 2–29. Here the drop-down list can be scrolled to provide all of the events
associated with the selected object.

To select the Click procedure, do either of the following:

• Using the list’s scroll bar, locate the word Click, and then click on this keyword.
• Using the up-arrow cursor key, highlight the word Click, and press Enter.

Either of these actions will add the following lines to the Code window:

Private Sub Form1_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles MyBase.Click

End Sub

In your code window, the first statement beginning with Private fits on one line.
However, this line will not fit on a page of this book. To continue a Visual Basic state-
ment on the next line, type a space followed by the underscore symbol (“ _”).

You are now ready to add code to the Form1 Click event. Type the line,

MessageBox.Show("Hello World!", "Sample")

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 75

76 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–30 The Initial Run Time Application Window

Figure 2–31 The Effect of the Mouse Click Event

between the header line Private Sub Form1_Click (parameters) and the termi-
nating line End Sub. When this task is completed, the procedure should appear as
shown below:

Private Sub Form1_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles MyBase.Click

MessageBox.Show("Hello World!", "Sample")
End Sub

Note that we have indented the single Visual Basic statement using three spaces.
Although this is not required, indentation is a sign of good programming practice. Here
it permits the statements within the procedure to be easily identified.

Our event procedure is now complete and you can close the Code window. When
you run the program, the application should appear as shown in Figure 2–30. Clicking
anywhere on the window will create the window shown in Figure 2–31. To remove the

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 76

2.3 Adding an Event Procedure | 77

Figure 2–32a Notification of an Error Figure 2–32b Identification of the Invalid Statement and its Procedure

message box, press either the escape (Esc) or Enter key, or click the OK Button. After
performing this test, save the application using the Save All option from the File menu.

Correcting Errors

If you incorrectly typed the message box statement in your procedure, when the pro-
gram is run the code box containing this procedure would automatically be displayed
with the highlight placed on the incorrect statement. For example, if you inadvertently
spelled MessageBox as MessageBx, the window shown in Figure 2–32a would appear. If
you then clicked No in the message box, Figure 2–32b would appear. Below the Code
window, a new window would appear listing all the errors detected. In this case only
one error was found: Visual Basic could not interpret MessageBx. If you double-clicked
MessageBx in the Task List window, Visual Basic would position the cursor in the Code
window beside the statement in question. Note that even before you tried running the
program, Visual Basic would underline, with a blue saw-toothed line, parts of state-
ments that it could not interpret. Once you corrected the error, you could re-run the
program.

Programmer Notes

Code Editor Options

The Visual Basic Editor provides a number of options that are useful when you are entering
code into the Code window. These include the following:

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 77

78 | Chapter 2: Introduction to Visual Basic .NET

Color Coded Instructions

The Visual Basic Editor displays procedural code in a variety of user-selected colors. By
default, the following color selections are used:

Keywords—Blue

Comments—Green

Errors—Blue, saw-toothed underline

Other Text—Black

Completing a Word

Once you have entered enough characters for Visual Basic to identify a work, you can have
the Editor complete the word.

Quick Syntax Information:

If you are trying to complete a statement, such as a MessageBox.Show statement, and forget
the required syntax, you can ask the editor to provide it. You activate this option by placing
the insertion cursor (the vertical insert line) over the piece of code in question.

Exercises 2.3

1. Define the following terms:
a. event-procedure
b. dialog box
c. method
d. header line
e. argument
f. template

2. a. What window do you use to enter the code for an event procedure?
b. List two ways of activating the window you listed as the answer for Exercise 2a.

3. Using the Code window, determine how many event procedures are associated
with a form.

4. Design and run the application presented in this section using the MessageBox.Show
method in the form’s click event procedure.

2.4 Adding Controls

Although the application presented in the previous section is useful in introducing us to
the basic design-time windows needed for developing Visual Basic applications, it is not
a very useful application in itself. To make it useful, we will have to add additional

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 78

2.4 Adding Controls | 79

Figure 2–33 Program 2-3’s Interface

objects and event procedures to the form. Adding objects to the form creates the final
graphical interface that the user will see and interact with when the program is run.
Adding event procedures to the objects then brings them “to life,” so that when they are
selected something actually happens. In this section, we present the basic method for
placing objects on a form, and in the next section we will attach specific event proce-
dures to these objects.

Objects selected from the Toolbox and placed on a form are referred to as controls.
Placing objects on a Form is quite simple, and the same method is used for all objects.

The simplest procedure is to double-click the desired Toolbox object. This causes an
object of the selected type to be automatically placed on the Form. Once this is done
you can change its size or position, and set any additional properties such as its name,
text, or color. These latter properties are modified from within the Properties window or
in the Design window, and determine how the object appears when it is first displayed
during run time.

By far the most commonly used Toolbox objects are the Button, TextBox, and
Label. For our second application, we will use the first two of these object types—the
Button and TextBox—to create the design-time interface shown in Figure 2–33.

Adding a Button

To place a button on the form, double-click the Button icon. Double-clicking this icon
causes a button with eight small squares, referred to as sizing handles, to be placed on
the form, as shown in Figure 2–34. The fact that the sizing handles are visible indicates
that the object is active, which means that it can be moved, resized, and have its other

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 79

80 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–34 The First Button Placed on the Form

properties changed. To deactivate the currently active object, use the mouse to click any-
where outside of it. Clicking on another object will activate the other object, while click-
ing on an area of the form where no object is located activates the Form object itself.

The active object, which should now be the button just placed on the form, can be
moved by placing the mouse pointer anywhere inside the object (but not on the sizing
handles), holding down the mouse’s left button, and dragging the object to its desired
new position. Do this now and place this first button in the position of the Message
button shown in Figure 2–33. Your form should now look like the one shown in Fig-
ure 2–35.

Once you have successfully placed the first button on the form, either use the same
procedure to place two more buttons in the positions shown in Figure 2–36, or use the
alternative procedure given in the Programmer Notes box on page 82. Included in this
box are additional procedures for resizing, moving, and deleting an object. Controls do
not have to line up perfectly, but should be placed neatly on the form.

Adding a TextBox Control

Text boxes can be used for both entering data and displaying results. In our current
application, we will use a text box for output by displaying a message when one of the
form’s buttons is clicked.

To place a TextBox object on a form, double-click the TextBox icon, as we did
when we placed the three-button object. If you happen to double-click the wrong icon,
simply activate it and press the Delete key to remove it. Once you have placed a text
box on the form, move and resize it so that it appears as shown in Figure 2–37.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 80

2.4 Adding Controls | 81

Figure 2–35 The Final Placement of the First Button

Figure 2–36 Placement of Three Buttons on the Form

Programmer Notes

Creating and Deleting Objects

To Add an Object:

Either:

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 81

82 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–37 Placement of the TextBox

Double-click the desired object in the toolbox. Doing this places a presized object on the form.

Or:

Click the desired object in the Toolbox and then move the mouse pointer onto the form.
When the mouse pointer moves onto the form, it will change to a crosshair cursor. Hold the
left mouse button down when the crosshairs are correctly positioned for any corner of the
object and drag the mouse diagonally away from this corner, in any direction, to generate
the opposite corner. When the object is the desired size, release the left mouse button.

To Resize an Object:

Activate the object by clicking inside it. Place the mouse pointer on one of the sizing han-
dles, which will cause the mouse pointer to change to a double-sided arrow, <=>. Hold
down the left mouse button and move the mouse in the direction of either arrowhead.
Release the mouse button when the desired size is reached. You can also hold down the Shift
key while pressing any of the four arrow keys to resize the object. Pressing the up and down
arrow keys will decrease and increase the height; pressing the right and left arrow keys will
increase and decrease the width.

To Move an Object:

Whether the object is active or not, place the mouse pointer inside the object and hold down
the left mouse button. Drag the object to the desired position and then release the mouse
button. You can also press one of the four arrow keys to move the object in the direction of
the arrow. Holding down the Control key while pressing an arrow key will move the object
in smaller increments.

To Delete an Object:

Activate the object by clicking inside it, and then press the Delete key.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 82

2.4 Adding Controls | 83

Table 2–5 Program 2-3’s Initial Properties Table

Object Property Setting

Form Name frmMain6

Text The Hello Application—Ver. 3.0
Button Name btnMessage

Text &Message
Button Name btnClear

Text &Clear
Button Name btnExit

Text E&xit
TextBox Name txtDisplay

Text (blank)

Setting the Initial Object Properties

At this point we have assembled all of the Form controls that are required for our appli-
cation. We still need to change the default names of these objects and set the Text proper-
ties of the buttons to those previously shown in Figure 2–33. After that, we can add the
code so that each button performs its designated task when it is clicked. Let’s now change
the initial properties of our four objects to make them appear as shown in Figure 2–33.
Table 2–5 lists the desired property settings for each object, including the Form object.

6Be sure to read the Programmer Notes on changing Form names. If the actions in the Note are not
taken, the program may never run.

Programmer Notes

Changing the Name of a Form

When executing an application, Visual Basic needs to know the name of the form with
which to start the application. So far we have only created small programs with one form. In
subsequent chapters we will build applications with multiple forms.

By default, Visual Basic assumes that the name of the first form of the application is Form1.
If we change the name of the form in the Property Window, even in a one-form application,
Visual Basic will generate the following error message when we try to run the program:

‘Sub Main’ was not found in ‘Project_1.Form1’.

To fix this error, there are two options.

1. Double-click the above error. This will cause the dialog box shown in Figure 2–38 to
appear, prompting us to confirm that frmMain is the first form to be executed. Double

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 83

84 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–38 Error Dialog Caused by New Form Name

Figure 2–39 Dialog Box to Change the Startup Form Name

click Project_1.frmMain and then click OK. This will only have to be done once because
the specification that frmMain is the initial form will be saved with other project infor-
mation.

2. In the Solution Explorer, highlight Project 1, right-click it, and then choose Properties.
The form shown in Figure 2–39 will appear. From the Startup Object, select the new
form name, in this case frmMain.

Before we set the properties listed in Table 2–5, two comments are in order. The first
concerns the ampersand (&) symbol that is included in the Text property of all of the
buttons. This symbol should be typed exactly as shown. Its visual effect is to cause the
character immediately following it to be underlined. Its operational effect is to create an
accelerator key. An accelerator key, which is also referred to as a hot key sequence (or
hot key, for short), is simply a keyboard shortcut for a user to make a selection. When
used with a button it permits the user to activate the button by simultaneously pressing
the Alt key and the underlined letter key, rather than either clicking with the mouse or
activating the button by first selecting it and then pressing the Enter key.

The second comment concerns the Text property for a text box, shown in the last
line in Table 2–5. For a text box, the Text setting determines what text will be displayed
in the text box. As shown in Figure 2–37, the initial data shown in the text box is

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 84

2.4 Adding Controls | 85

Figure 2–40 Changing the Properties Settings

Lists All
Controls on
This Form

TextBox1, which is the default value for this property. The term (blank) means that we
will set this value to a blank.

Also note that, although we are setting the initial properties for all of the objects at
the same time, this is not necessary. We are doing so here to show the various setting
methods in one place. In practice, we could just as easily have set each object’s proper-
ties immediately after it was placed on the form.

Recall from the Programmer Notes box on page 59 that a Properties window can be
activated in a variety of ways: by pressing the F4 function key or by selecting Proper-
ties from the Window menu (which can also be obtained by the hot key sequence
ALT+V, followed by S). Now, however, we have five objects on the design screen: the
form, three buttons, and a text box. To select the properties for a particular object, you
can use any of the options listed in the Programmer Notes box on page 59.

The simplest method is to first activate the desired object by clicking it, then press
the F4 function key, and then scroll to the desired property. Because an object is auto-
matically activated just after it is placed on a form, this method is particularly useful for
immediately changing the object’s properties. This sequence of adding an object and
immediately changing its properties is the preferred sequence for many programmers.

An alternative method is to open the Properties window for the currently active
object, no matter what it is, and then click on the downward-facing arrowhead key (�)
to the right of the object’s name (see Figure 2–40). The pull-down list that appears con-
tains the names of all objects associated with the form. Clicking the desired object name

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 85

86 | Chapter 2: Introduction to Visual Basic .NET

in the list both activates the desired object and opens its Properties window. This
method is particularly useful when changing the properties of a group of objects by
sequencing through them after all objects have been placed on the form. Using either of
these methods, alter the initial properties to those listed in Table 2–5.

At this stage, you should see the design screen shown in Figure 2–40. Within the
context of developing a complete program, we have achieved the first two steps in our
three-step process. They are:

1. Create the GUI.

2. Set the properties of each object on the interface.

We will complete the third and final step of writing the code in the next section.
However, before doing so, run the application by pressing the F5 function key. Despite
the fact that clicking on any of the buttons produces no effect (because we have not yet
attached any code to these buttons), we can use the application to introduce two impor-
tant concepts connected with any form: focus and tab sequence.

Programmer Notes

Activating the Properties Window for a Specific Object

1. Activate the object by clicking it, and then press the F4 function key.

2. Activate the Properties window for the currently selected object or form, whatever it
may be, by either pressing the F4 key or selecting the Properties option from the Win-
dows menu (Alt+V / S). Then change to the desired object from within the Properties
window by clicking the underlined down arrow to the right of the object’s name and
then selecting the desired object from the pull-down list.

Looking at the Focus and Tab Sequence

When an application is run and a user is looking at the form, only one of the form’s
controls will have input focus, or focus, for short. The control with focus is the object
that will be affected by pressing a key or clicking the mouse. For example, when a but-
ton has the focus, its caption will be surrounded by a dotted rectangle, as shown in Fig-
ure 2–41. Similarly, when a text box has the focus, a solid cursor appears, indicating
that the user can type in data.

An object can only receive focus if it is capable of responding to user input through
either the keyboard or mouse. As a result, controls such as labels can never receive the
focus. In order to receive the focus a control must have its Enabled, Visible, and Tab-
Stop properties set to True. As the default settings for all three properties are True, they
do not usually have to be checked for normal tab operation. By setting a control’s
Enabled property to True, you permit it to respond to user-generated events, such as
pressing a key or clicking a mouse. The Visible property determines whether an object
will actually be visible on the form during run time (it is always available for view dur-
ing design time). A True TabStop setting forces a tab stop for the object, while a False

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 86

2.4 Adding Controls | 87

Figure 2–41 A Button With and Without Focus

value causes the object to be skipped over in the tab stop sequence. A control capable of
receiving focus, such as a button, can receive the focus in one of three ways:

1. A user clicks the object.

2. A user presses the tab key until the object receives the focus.

3. The code activates the focus.

To see how the first method operates, press the F5 function key to execute the Hello
Application (Program 2-3). Once the program is executing, click on any of the form
objects. As you do, notice how the focus shifts. Now, press the tab key a few times and
see how the focus shifts from control to control. The sequence in which the focus shifts
from control to control as the tab key is pressed is called the tab sequence. This
sequence is initially determined by the order in which controls are placed on the form.
For example, assume you first created buttons named btnCom1, btnCom2, and
btnCom3, respectively, and then created a text box named txtText1. When the applica-
tion is run, the btnCom1 button will have the focus. As you press the tab key, focus will
shift to the btnCom2 button, then to the btnCom3 button, and finally to the text box.
Thus, the tab sequence is btnCom1 to btnCom2 to btnCom3 to txtText1. (This assumes
that each control has its Enabled, Visible, and TabStop properties all set to True.)

You can alter the default tab order obtained as a result of placing controls on the
form by modifying an object’s TabIndex value. Initially, the first control placed on a
form is assigned a TabIndex value of 0, the second object is assigned a TabIndex value
of 1, and so on. To change the tab order, you have to change an object’s TabIndex value
and Visual Basic will renumber the remaining objects in a logical order. For example, if
you have six objects on the form with TabIndex values from 0 to 5, and you change the
object with value 3 to a value of 0, the objects with initial values of 0, 1, and 2 will
have their values automatically changed to 1, 2, and 3, respectively. Similarly, if you
change the object with a TabIndex value of 2 to 5, the objects with initial values of 3, 4,
and 5 will have their values automatically reduced by one. Thus, the sequence from one
object to another remains the same for all objects, except for the insertion or deletion of
the altered object. However, if you become confused, simply reset the complete
sequence in the desired order by manually starting with a TabIndex value of 0 and then
assigning values in the desired order. A control whose TabStop property has been set to

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 87

88 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–42 Preparing Two Controls for Formatting

False maintains its TabIndex value, but is simply skipped over for the next object in the
tab sequence. Be sure to check all the TabIndex values after any changes to the form
have been made. In Chapter 3, we will describe another way to set the TabIndex values.

The Format Menu Option7

The Format menu option provides the ability to align and move selected controls as a
unit, as well as lock controls and make selected controls the same size. This is a great
help in constructing a consistent look on a form that contains numerous controls. In
this section, we will see how this menu option is used.

As a specific example using the Format menu, consider Figure 2–42, showing two
buttons on a design form. To align both controls and make them the same size, first you
must select the desired controls. This can be done by clicking the form and dragging the
resulting dotted line to enclose all of the controls that you wish to format, as illustrated
in Figure 2–42, or by holding the Shift key down and clicking the desired controls.

Once you have selected the desired controls for formatting, the last selected object
will appear with solid grab handles. For example, in Figure 2–43 it is Button2. The solid
grab handles designate the control that is the defining control, setting the pattern for
both sizing and aligning the other selected controls. If this control is not the defining
control that you want, select another by clicking it.

Having selected the desired defining control, click on the Format menu bar and
then select the desired Format option. For example, Figure 2–44 illustrates the selection
for making all controls within the dotted lines the same size. Within this submenu, you
have the further choice of making either the width, height, or both dimensions of all
controls equal to the defining control’s respective dimensions. The choice shown in this
figure would make all selected controls equal in both width and height to the defining
control. You can also use the Layout Toolbar, as shown in Figure 2–8, instead of using
the Align submenu.

You can also change the size of a control by selecting the control in design mode
and using the Shift and arrow keys. In addition to sizing controls, you may also want to

7This topic may be omitted on first reading with no loss of subject continuity.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 88

2.4 Adding Controls | 89

Figure 2–44 Making Controls the Same SizeFigure 2–43 Locating the Defining Control

Figure 2–45 Aligning Controls to the Defining Control

align a group of controls within a form. Figure 2–45 illustrates the options that are pro-
vided for the Align submenu. As shown, controls may be aligned in seven different
ways, the first six of which are aligned relative to the position of the defining control.
Choosing any one of these first six options will move all other formatted controls in
relation to the defining control. The position of the defining control is not altered.

An additional and very useful feature of the Format selection process is that all
selected controls can be moved as a unit. To do this, click within one of the selected
controls and drag the control. As the control is dragged, all other selected controls will
move as a group while maintaining their relative positions to each other.

Finally, as shown in Figures 2–44 and 2–45, the Format submenu provides a num-
ber of other Format choices, the effects of which are obvious, except perhaps for the
Lock control. This control locks all controls on the form in their current positions and
prevents you from inadvertently moving them once you have placed them. Because this
control works on a form-by-form basis, only controls on the currently active form are
locked, and controls on other forms are unaffected.

The Label Control

When you create a GUI application, you need to make clear what the purpose of a form
is and what sort of data should be entered into a text box. The Label control is used to
provide the user with information. As such, labels appear as headings within a form or
next to a control to let the user know the control’s purpose. For example, in Figure

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 89

90 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–46 A Form with Labels

Figure 2–47 Selecting the Font Property

2–46, the heading Disk Order Sales Form is a label. Additionally, the text located to
the left of each text box is also a label. As the text within a button is provided by the
button’s Text property, buttons rarely have labels associated with them.

Creating a label is very simple; all that is required is selecting the Label icon from
the Toolbox and setting both its Text and Font properties. By definition, a label is a
read-only control that cannot be changed by a user directly. The text displayed by a
label is determined by its Text property, which can be set at design time or at run time
under program control. The Text property’s value is displayed in a style using the infor-
mation provided by the Font property. For example, Figure 2–47 shows the Font prop-
erty’s setting box as it appears when the Font property was selected for the heading
used in Figure 2–46. In particular, notice that the highlighted Font property has an
ellipsis box (the box with the three dots) to the right of the MS Sans Serif setting. The

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 90

2.4 Adding Controls | 91

Figure 2–48a The Font Dialog Box Figure 2–48b The Font Properties Expanded

ellipsis box appears when the Font property is selected, and clicking this box causes the
Font dialog box shown in Figure 2–48a to appear.

In the Font dialog box, you set the label’s font type, style, and size. The size is spec-
ified in points, and there are 72 points to an inch. Note that the label used as a heading
in Figure 2–46 uses a Microsoft Sans Serif font type and is displayed in bold with a
point size of 10. The type size used for all of the other labels is 8.25 points, the default.
To make the form easily readable, you should try to avoid using a point size smaller
than 8 points on any form. Figure 2–48b shows what is displayed in the properties win-
dow if you click on the + to the left of the Font property.

Although it is the label’s Text property that is displayed on an application’s inter-
face, an additional useful property is the AutoSize. If the AutoSize property is set to
False, you must manually adjust the physical size of the label at design time, using the
sizing handles to fit the text. It is generally easier to set the AutoSize property to True.
Then, as you type in the text, the label will automatically expand its width to the right
to fit the text. However, you should take care that the size of the control is not too large
and does not impact the other controls.

Exercises 2.4

1. Determine how many event procedures are available for a Button control. (Hint:
Activate the Code window for a form that has a Button control and count the avail-
able procedures.)

2. Determine how many properties can be set for a text box control.
3. Determine if a label has a TabStop property.
4. What is the difference between the Name and Text properties?
5. How is a hot (accelerator) key created for a button?
6. Create a button named btnInput having a Text setting of Values.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 91

92 | Chapter 2: Introduction to Visual Basic .NET

7. Create a button named btnDisplay having a Text setting of Display.

8. Assume that one button has a Text setting of Message, and a second button has a
Text setting of Display. Determine what happens when the hot key sequence Alt+A
is pressed twice. Do this by creating the two buttons and running the program.

9. Create a text box named txtOne that has a red foreground color and a blue back-
ground color. The initial text displayed in the box should be Welcome to Visual
Basic. (Hint: Use the ForeColor and BackColor properties—click on the ellipsis (...) to
bring up the available colors.)

10. Create a text box named txtTwo that has a blue foreground color and a gray back-
ground color. The initial text displayed in the box should be High-Level Language.
(Hint: Use the ForeColor and BackColor properties—click on the ellipsis (...) to bring
up the available colors.)

11. What are the three ways that an object can receive focus?

12. To receive focus in the tab sequence, what three properties must be set to True?

13. a. Create a graphical user interface that contains two buttons and two text boxes.
The names of these controls should be btnOne, btnTwo, txtFirst, and txtSecond.
Set the tab sequence so that tab control goes from txtFirst to txtSecond to btnOne
to btnTwo.

b. For the tab sequence established in Exercise 13a, set the TabStop property of
btnOne to False and determine how the tab sequence is affected. What was the
effect on the objects’ TabIndex values?

c. For the tab sequence established in Exercise 13a, set the TabStop property of
btnOne to True and its Visible property to False. What is the run time tab
sequence now? Did these changes affect any object’s TabIndex Values?

d. For the tab sequence established in Exercise 13a, set the TabStop property of
btnOne to True, its Visible property to True, and its Enabled property to False.
What is the run time tab sequence now? Did these changes affect any object’s
TabIndex values?

e. Change the tab sequence so that focus starts on txtFirst, and then goes to btnOne,
txtSecond, and finally btnTwo. For this sequence, what are the values of each
object’s TabIndex property?

2.5 Adding Additional Event Procedures

Now that we have added four objects to Program 2-3 (The Hello Application, Version
3.0, shown in Figure 2–40), we will need to supply these objects with event code.
Although each object can have many events associated with it, one of the most com-
monly used events is the clicking of a button. For our Hello Application, we will ini-
tially create three mouse click event procedures, each of which will be activated by
clicking one of the three buttons. Two of these event procedures will be used to change
the text displayed in the text box, and the last will be used to exit the program.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 92

2.5 Adding Additional Event Procedures | 93

To change an object’s property value while a program is running, a statement is
used that has the syntax:

Object.Property = value

The term to the left of the equals sign identifies the desired object and property. For
example, btnMessage.Name refers to the Name property of the control named btnMes-
sage, and txtDisplay.Text refers to the Text property of the control named txtDisplay.
The period between the object’s name and its property is required. The value to the right
of the equal sign provides the new setting for the designated property. The equal sign is
used as an assignment operator where the value on the right is ‘assigned’ to the object
on the left.

For our program, we want to display the text Hello World! when the button
named btnMessage is clicked. This requires that the statement

txtDisplay.Text = "Hello World!"

be executed for the click event of the btnMessage control. Notice that this statement will
change a property of one object, the TextBox object, using an event procedure associ-
ated with another object, a Button object. Now let’s attach this code to the btnMessage
button so that it is activated when this control is clicked. The required event procedure
code is:

Private Sub btnMessage_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnMessage.Click

txtDisplay.Text = "Hello World!"
End Sub

To enter this code, double-click the btnMessage control. (Make sure you have the
design form shown in Figure 2–33 on the screen). This will open the Code window
shown in Figure 2–49. As always, the stub for the desired event is automatically sup-
plied for you, requiring you to complete the procedure’s body with your own code. You
might also notice that the keywords Private, Sub, ByVal, As, and End are displayed in
a different color than the procedure’s name.8

Also, note that the first statement above beginning with Private is too long to fit
on one line in this book. To continue a Visual Basic statement on the next line, type a
space followed by the underscore symbol (“ _”) and indent the continued statement.

The object identification box should display btnMessage and the procedure identifi-
cation box should display Click. This indicates that the current object is the btnMessage
control and that the procedure we are working on is for the Click event. If either of

8Typically, the color for keywords is blue and is automatically supplied when a keyword is typed.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 93

94 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–49 The Code Window

these boxes does not contain the correct data, click the underlined arrow to the right of
the box and then select the desired class and method. Note that when you click on the
arrow to the right of the class name box, a drop-down list appears which lists all of the
form’s objects, including the form itself.

When the Code window looks like the one shown in Figure 2–49, type in the line

txtDisplay.Text = "Hello World!"

between the header line, Private Sub btnMessage_Click(), and terminating End Sub line,
so that the complete procedure appears as

Private Sub btnMessage_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnMessage.Click

txtDisplay.Text = "Hello World!"
End Sub

After your procedure is completed, press the F5 function key to run the program.
When the program is running, activate the btnMessage control by either clicking it, tab-
bing to it and pressing the Enter key, or using the hot key combination Alt+M. When any
one of these actions is performed, your screen should appear as shown in Figure 2–50.

One of the useful features of Visual Basic is the ability to run and test an event pro-
cedure immediately after you have written it, rather than having to check each feature
after the whole application is completed. You should get into the habit of doing this as
you develop your own programs.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 94

2.5 Adding Additional Event Procedures | 95

Figure 2–50 The Interface Produced by Clicking the Message Button

Now let’s finish our second application by attaching event code to the click events of
the remaining two buttons, and then fixing a minor problem with the TextBox control.

Bring up the Code window for the btnClear button by double-clicking this control
after you have terminated program execution and are back in the design mode. When
the Code window appears, add the single line

txtDisplay.Text = ""

between the procedures header (Private Sub) and terminating line (End Sub).
When this is completed, the procedure should appear as follows:

Private Sub btnClear_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnClear.Click

txtDisplay.Text = ""
End Sub

The string “”, with no spaces, is called the empty string. This string consists of no char-
acters. Setting the Text property of the text box to this string value will have the effect of
clearing the text box of all text. Note that a value such as “ “, which consists of one or
more blank spaces, will also clear the text box. However, a string with one or more blank
spaces is not an empty string, which is defined as a string having no characters.

When this procedure is completed, use the arrow to the right of the class name box
in the Code window to switch to the btnExit control. (You can also double-click the
btnExit control to open the Code window.) The event procedure for this event should be:

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 95

96 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–51 The Initial Run Time Window

Figure 2–52 The Run Time Window after the Message Button is Clicked

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles btnExit.Click

Beep()
End

End Sub

Beep is an instruction that causes the computer to make a short beeping sound. The
keyword End terminates an application.

You are now ready to run the application by pressing the F5 function key. Running
the application should produce the window shown in Figure 2–51. Note that when the
program is initially run, focus is on the btnMessage button and the text box is empty.
The empty text box occurs because we set this control’s Text property to a blank during
design time. Similarly, focus is on the btnMessage box because this was the first control
added to the Form (its TabIndex value is 0).

Now click the Message control to activate the btnMessage_Click() procedure and
display the message shown in Figure 2–52.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 96

2.5 Adding Additional Event Procedures | 97

Clicking the Clear button invokes the btnClear_Click() procedure, which clears
the text box, whereas clicking the Exit button invokes the btnExit_Click() proce-
dure. This procedure causes a short beep and terminates program execution.

Comments

Comments are explanatory remarks made within a program. When used carefully, com-
ments can be helpful in clarifying what the complete program is about, what a specific
group of statements is meant to accomplish, or what one line is intended to do.

Comments are indicated by using an apostrophe or the keyword Rem, which is
short for Remark. Using an apostrophe is the preferred method and it will be used in this
book. For example, the following are comment lines:

' this is a comment
' this program calculates a square root

With one exception, comments can be placed anywhere within a program and have
no effect on program execution. Visual Basic ignores all comments—they are there strictly
for the convenience of anyone reading the program. The one exception is that comments
cannot be included at the end of a statement that is continued on the next line.

A comment can always be written either on a line by itself or on the same line as a
program statement that is not continued on the next line. When written on a line by
itself, either an apostrophe or the keyword Rem may be used. When a comment is writ-
ten on the same line as a program statement, the comment must begin with an apostro-
phe. In all cases, a comment only extends to the end of the line it is written on. For
example, the following event procedure illustrates the use of comments.

' This is the click event procedure associated with the Exit
Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs) Handles btnExit.Click
Beep() 'This causes a short beep
End ' This ends the application

End Sub

If you need to create multiline comments, each line must begin with an apostrophe.
Typically, many comments are required when using unstructured programming lan-
guages. These comments are necessary to clarify the purpose of either the program itself
or individual sections and lines of code within the program. In Visual Basic, the pro-
gram’s inherent modular structure is intended to make the program readable, making
the use of extensive comments unnecessary. However, if the purpose of a procedure or
any of its statements is still not clear from its structure, name, or context, include com-
ments where clarification is needed.

Statement Categories

You will have many statements at your disposal while constructing your Visual Basic
event procedures. All statements belong to one of two broad categories: executable

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 97

98 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–53 The Code Window

statements and nonexecutable statements. An executable statement causes some specific
action to be performed by the compiler or interpreter. For example, a MessageBox.Show
statement or a statement that tells the computer to add or subtract a number is an exe-
cutable statement. A nonexecutable statement is a statement that describes some feature
of either the program or its data but does not cause the computer to perform any action.
An example of a nonexecutable statement is a comment statement. As the various
Visual Basic statements are introduced in the upcoming sections, we will point out
which ones are executable and which are nonexecutable.

A Closer Look at the TextBox Control

Text boxes form a major part of most Visual Basic programs, because they can be used
for both input and output purposes. For example, run the Program 2-3 (see Figure 2–51)
again, but this time click on the text box. Note that a cursor appears in the text box. At
this point, you can type in any text that you choose. The text that you enter will stay in
the text box until you click on one of the buttons, either changing the text to Hello
World!, clearing the Text box of all text, or terminating the program.

Because we have constructed the program to use the text box for output display
purposes only, we would like to alter the operation of the text box so that a user cannot
enter data into it. To do this, we set the text box’s Enter event to immediately put focus
on one of the buttons. The following procedure accomplishes this:

Private Sub txtDisplay_Enter(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles txtDisplay.Enter

btnMessage.Focus()
End Sub

Enter this procedure now in the text box’s Code window. When you first open the
Code window for the TextBox object (by either pressing the Shift+F4 keys or using the
View menu), the Code window may appear as shown in Figure 2–53. If this happens,
click the underlined arrow to the right of the class name box and select the txtDisplay
object. Then click the Method Name underlined arrow and choose the Enter event.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 98

2.5 Adding Additional Event Procedures | 99

Focus is a method in which the Button object sets the focus on its object.9 Thus,
when a user clicks on the text box, it will trigger the txtDisplay_Enter() procedure,
which in turn will call the Focus method of the btnMessage button. This method will set
the focus on the Message Button.

Note that when you initially entered characters in the text box, before we deacti-
vated it for input, the entered characters were actually accepted as a string of text. This
is always true of a text box—all data entered or displayed is considered a string. As we
will see in the next chapter, when we want to use a text box to input a number, such as
12356, we will have to carefully check that a string representing an invalid number,
such as 123a56, is not inadvertently entered. This type of validation is necessary because
the text box does not filter out unwanted characters from an input or displayed string.

Exercises 2.5

1. a. Determine the events that can be associated with a button. (Hint: Create a button
and use the Code window to view its various events.)

b. List the event names for each event that can be associated with a button.

2. Repeat Exercise 1a for a Text box.

3. Repeat Exercise 1a for a Label.

4. List the objects and the events that the following procedures refer to:

a. Private Sub btnDisplay_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnDisplay.Click

b. Private Sub btnBold_Leave(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnBold.Leave

c. Private Sub txtInput_Enter(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles txtInput.Leave

d. Private Sub txtOutput_Leave(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles txtOutput.Leave

5. Using the correspondence shown here, follow the instructions below:

Event Name Event
Click Click

DblClick Double click

Enter Enter

Leave Leave

a. Write the header line for the double-click event associated with a Label control
named lblFirstName.

b. Write the header line for the lost focus event of a text box named txtLastName.

c. Write the header line for the got focus event of a text box named txtAddress.

9An alternative solution is to set the Locked property of the text box to True. With this property set to True,
the text box is locked from receiving any input and effectively becomes a read-only box. However, it still can
be clicked on and receive focus.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 99

100 | Chapter 2: Introduction to Visual Basic .NET

6. Write instructions that will display the following message in a text box named txtTest:

a. Welcome to Visual Basic

b. Now is the time

c. 12345

d. 4 * 5 is 20

e. Vacation is near

7. For each of the following procedures, determine the event associated with the button
btnDisplay and what is displayed in the text box named txtOut:

a. Private Sub btnDisplay_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnDisplay.Click

txtOut.Text = “As time goes by”

End Sub

b. Private Sub btnDisplay_Enter(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnDisplay.Enter

txtOut.Text = “456”

End Sub

c. Private Sub btnDisplay_Leave(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnDisplay.Leave

txtOut.Text = “Play it again Sam”

End Sub

d. Private Sub btnDisplay_Enter(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnDisplay.Enter

txtOut.Text = “ ”

End Sub

8. a. TextAlign is the name of a property that can be set for a text box. What do you
think this property controls?

b. What display do you think the following procedure produces when the button
btnOne is clicked?

Private Sub btnOne_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles BtnOne.Click

txtBox1.TextAlign = HorizontalAlignment.Center

txtBox1.Text = "Computers"

End Sub

For Exercises 9 and 10, create the given interface and initial properties. Then com-
plete the application by writing code to perform the stated task.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 100

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 101

9. Object Property Setting
Form Name frmMain

Text Messages

Button Name btnGood

Text &Good

Button Name btnBad

Text &Bad

Text box Name txtMessage

Text (blank)

When a user clicks the btnGood button, the message Today is a good day! should
appear in the text box, and when the btnBad button is clicked, the message I’m hav-
ing a bad day today! should be displayed.

10. Write a Visual Basic application having three buttons and one text box that is ini-
tially blank. Clicking the first button should produce the message See no evil. Click-
ing the second button should produce the message Hear no evil, and clicking the
third button should produce the message Speak no evil in the text box.

2.6 Focus on Program Design and Implementation: Creating a
Main Menu

Most commercial applications perform multiple tasks, with each task typically assigned
its own form. For example, one form might be used for entering an order, a second form
for entering the receipt of merchandise into inventory, and a third form used to specify
information needed to create a report.

Although each additional form can easily be added to an existing project using the
techniques presented later in this section, there is the added requirement for activating
each form in a controlled and user-friendly manner. This activation can be accomplished
using an initial main menu form that is displayed as the application’s opening window.
This menu of choices provides the user with a summary of what the application can do,
and is created as either a set of buttons or as a menu bar. Here, we show how to rapidly
prototype a main menu consisting of buttons, using the Rotech Systems case (see Section
1.5) as an example. The procedure for constructing a menu bar is presented in Section 1.5.

Button Main Menus

The underlying principle involved in creating a main menu screen is that a user can
easily shift from one form to a second form by pressing a button. How this works for
two screens is illustrated in Figure 2–54. Here, pressing the button shown on the Main
Menu form causes the second form to be displayed. Similarly, pressing the second
form’s button redisplays the Main Menu form.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 101

102 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–54 Switching Between Two Screens

Main Menu

Display the
Second Form

Display A

frmMain

Form A

frmSecond

Return

Display the First Form

Figure 2–55 A Sample Main Menu Screen

The switching between screens that is provided by the scheme shown in Figure
2–54 can easily be extended to produce a main menu screen, a sample of which is
shown in Figure 2–55. For this screen there would be four additional screens, with each
screen displayed by clicking one of the buttons on the main menu. In a completed
application, each additional screen is different, but each screen would have a Return
button to display the main menu screen again.

The menu options shown in this figure would be provided as the first operational
form presented to the user. The term operational form means that the form is used to
interact directly with the operational part of the system to perform a task, unlike an
information form. Information forms are purely passive forms that provide information
about the application, and which, if omitted from the system, would not stop the system
from performing its intended functions. Examples of information forms are an opening
splash screen containing general advertising information that is displayed for a few sec-
onds before the first operational form is presented, an About Box providing information
about the application (such as author, copyright holder, and version number), and Help
forms providing assistance on how to use various application features. An application’s
initial main menu screen is constructed from the information contained in the system’s

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 102

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 103

Table 2–6 The Initial Rotech Systems TTL Table

Form: Trigger
Task Object Event

Enter Inventory Receipts
Enter & Process a Mail-in Response
Enter & Process a Walk-in Request
Produce Reports
Exit the System

initial TTL table. We will construct the Rotech Systems main menu to provide access to
the tasks listed in the TTL table developed in Section 1.5, and reproduced here for con-
venience as Table 2-6.

Because each menu option in our main menu is to be activated by the clicking of a
button, we can now easily complete Table 2–6. The form that we will use to activate
these tasks is a Main Menu form. Each object used to trigger the listed task will be a
button, and each event trigger will be a button’s Click event. After names have been
assigned arbitrarily to each button, the completed initial TTL table is listed as Table 2–7.

Tips From The Pros

Creating a Main Menu

The development of a menu system is quite easy, provides one of the most visually impres-
sive functioning parts of a system, and actually demands the least in terms of programming
competency. To develop a menu, follow these steps:

1. Make the opening application’s form a Main Menu form, which is a form that contains
buttons used to display other forms.

2. Initially, add a single new form to the project, which ultimately will be replaced by an
operational form. (Later on, additional new forms will be added, one for each opera-
tional form required by the project.)

3. Provide the new form with a button having a caption such as Return to Main Menu
form. This button is referred to as the Return button.

4. Attach three lines of code to the new form’s Return button’s Click event.

These three lines of code appear as:

Dim frmMainRef As New frmMain()

Me.Hide ’ this is a valid statement

frmMainRef.Show ’ replace frmMain with any valid form name

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 103

104 | Chapter 2: Introduction to Visual Basic .NET

Table 2–7 The Completed Initial Rotech Systems TTL Table

Form: Main Menu Trigger
Task Object Event

Enter Inventory Receipts btnInvRec Click
Enter & Process a Mail-in Response btnMailins Click
Enter & Process a Walk-in Request btnWalkins Click
Produce Reports btnReport Click
Exit the System btnExit Click

The first code line creates a reference to the form frmMain. It is needed in order to refer
to existing forms. (The New keyword is explained more fully in Chapter 12.) The second
code line is an instruction to hide the current form from view, while the third line dis-
plays the frmMain form. As a result, if the Main Menu form is named frmMain, the
statement frmMainRef.Show displays the Main Menu form when the Return button is
pressed. In general, each new form will have more than one button. However, one but-
ton should always return the user directly to the Main Menu.

5. Attach three similar lines of code to each Main Menu button used to display a new
form. These lines of code take the form:

Dim frmDesiredRef As New frmDesired()

Me.Hide ’ this is a valid statement

frmDesired.Show ’ replace frmDesired with any valid form name

Initially, all Main Menu buttons will be used to display the same form added in Step 2. The
reason for using the Hide method rather than the Close method is based on the assumption
that we will be returning to each form many times, so we try to keep each form in memory
to minimize loading times.

The information in Table 2–7 tells us that, operationally, our main menu will con-
sist of five buttons, with each button’s Click event used to display another form. Specifi-
cally, clicking on the btnInvRec button will activate an operational form for entering
inventory receipts. Clicking the btnMailin button will activate an operational form for
entering an order for the promotional 10-diskette pack. Clicking the btnWalkin button
will activate an operational form for entering a walk-in order. Clicking the btnReport
button will activate an operational form for producing reports, and clicking the btnExit
button will terminate program execution. By using this information, and adding an
information label to the Main Menu form, we construct Table 2–8 displaying the initial
Main Menu properties table.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 104

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 105

Table 2–8 The Rotech Systems Main Menu Properties Table

Object Property Setting

Form Name frmMain
Text Main Menu

Button Name btnMailins
Text &Mail Ins
TabIndex 0

Button Name btnWalkins
Text &Walk Ins
TabIndex 1

Button Name btnInvRec
Text &Inventory Receipts
TabIndex 2

Button Name btnReports
Text &Reports
TabIndex 3

Button Name btnExit
Text E&xit
TabIndex 4

Label Name lblHeader
Text Rotech Systems Disk Promotion Program
Font MS Sans Serif, Bold, Size = 10

Figure 2–56 illustrates a form having the properties described by Table 2–8. Specifi-
cally, we have chosen to group the two buttons associated with order entry (Mail Ins and
Walk Ins) in one column, align the two remaining buttons in a second column, and center
the Exit button below and between the two columns. If there were an even number of but-
tons, we could have aligned them vertically into two columns, including the Exit button as
the last button in the second column, and made all the buttons the same size. Figures 2–57
and 2–58 show two alternatives to Figure 2–56. In each case, the size and placement of
each button is determined by the programmer, with the only overriding design considera-
tion at this point being that the size of each button within a grouping should be the same
and that the buttons should align in a visually pleasing manner. Although we will give a
number of form design guidelines in Section 3.6, the basic rule is to produce a functionally
useful form that is dignified and not ornate. The design and colors of your form should
always be appropriate to the business whose application you are producing.

We have given the Mail Ins button the initial input focus because of the majority
of times a user will be interacting with it and the fact that it deals with the system’s
most dynamic data.. Thus, by simply pressing the Enter key, a user will activate the
most commonly used button in the menu. The tab sequence then ensures a smooth
transition that moves the focus from the Mail Ins button down the first column to

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 105

106 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–56 Rotech’s Initial Main Menu Form

Figure 2–57 A Possible Main Menu Layout Figure 2–58 Another Main Menu Layout

the top of the second column of buttons, where the Inventory Receipts button is
located, and then down this column, over to the Exit button, and back to the top of
the first column.

In reviewing Figure 2–56, note that the window furnishes information about the
application and provides a current list of available choices shown as a sequence of but-
tons. We now need to add additional forms and provide code so that pressing any of the
buttons, except the Exit button, hides the current Main Menu form and displays the new
form appropriate to the selected menu choice. Pressing the Exit button performs the
normal operation of ending program execution.

Adding a Second Form

At this stage in our application’s development we have neither sufficient understanding
of the system’s requirements nor sufficient knowledge of Visual Basic to construct a

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 106

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 107

Figure 2–59 The Project’s “Under Development” Form

Table 2–9 The “Under Development” Form’s Properties Table

Object Property Setting

Form Name frmStub
Text Under Development

Button Name btnReturn
Text &Return to Main Menu

Label Name lblReturn
Text This Form is Under Development
Font MS Sans Serif, Bold

meaningful form to carry out the tasks indicated by the Main Menu. We can, however,
easily add a second form, shown in Figure 2–59, to indicate that the form is under
development. Note that this second form contains a Label object and a Button object,
the same types of objects included in our Main Menu form. The properties for this sec-
ond form are listed in Table 2–9. Because this form performs the single task of return-
ing to the Main Menu form, a TTL table listing this single task is not created.

To add this second form to our project, select the Add Windows Form item from the
Project menu, as shown in Figure 2–60. This will open the Add New Item dialog box
shown in Figure 2–61, from which you should select the Windows Form icon under the
Templates category. This will add the second form to the Project Explorer Window, as
shown in Figure 2–62. Once you have generated this new form, configure it with the
objects and properties listed in Table 2–9.

The form you have just created is an example of a stub form. The functional use of
a stub form is simply to see that an event is correctly activated. In our particular case, it
will be used to test the operation of the Main Menu to ensure that it correctly displays a
second form and provides a return back to the Main Menu from the newly developed

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 107

108 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–60 Adding a Second Form Using the Project Menu

Figure 2–61 The Add New Item Dialog Box

form. To do this, we now have to add the code that correctly shows and hides forms
from the user’s view.

Displaying and Hiding Forms

The Visual Basic methods provided for displaying and hiding forms from a user’s view
are listed in Table 2–10. When a project is first executed, the default is to automatically
load and display the project’s opening form. Other forms must then be loaded into

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 108

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 109

Figure 2–62 The Solution Explorer Window Showing Two Forms

Table 2–10 Form Display Statements and Methods

Instruction Type Syntax Example Description

Show Method Form-nameRef.Show() frmStubRef.Show() Displays a form. If the variables for the form
are not already loaded into memory, they
will be before the form is displayed.

Hide Method Me.Hide() Me.Hide() Hides a Form object, but does not unload its
variables from memory.

Close Method Me.Close() Me.Close() Hides a Form object and unloads its
variables from memory.

memory before they can be displayed, and forms that are no longer needed should be
unloaded to conserve memory space. Note that in order to use the Show method, we
need to create a reference to the forms that are being manipulated. In Table 2–10, we
use Form-nameRef and frmStubRef to designate this reference. To hide or close a form,
use Me to refer to the form that should be hidden.

Using the methods listed in Table 2–10, we easily can write event procedures to
hide the Main Menu form and load and display the Under Development stub form when
any Main Menu button, except the Exit button, is pressed. The required event procedure
codes are:

Main Menu Event Procedures

Private Sub btnMailins_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnMailins.Click

Dim frmStubRef As New frmStub()

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 109

110 | Chapter 2: Introduction to Visual Basic .NET

Me.Hide()
frmStubRef.Show()

End Sub

Private Sub btnWalkins_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnWalkins.Click

Dim frmStubRef As New frmStub()
Me.Hide()
frmStubRef.Show()

End Sub

Private Sub btnInvrec_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnInvrec.Click

Dim frmStubRef As New frmStub()
Me.Hide()
frmStubRef.Show()

End Sub

Private Sub btnReports_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnReports.Click

Dim frmStubRef As New frmStub()
Me.Hide()
frmStubRef.Show()

End Sub

Private Sub btnExit_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnExit.Click

Beep()
End

End Sub
Each of these Click event procedures causes the frmMain form to be hidden and the

frmStub form to be displayed whenever any Main Menu button is pressed, except for
the Exit button. The code for the stub form’s return button’s Click event is:

Private Sub btnReturn_Click(ByVal sender As Object, ByVal e As _
System.EventArgs) Handles btnReturn.Click

Dim frmMainRef As New frmMain()
Me.Hide()
frmMainRef.Show()

End Sub

The Return button simply hides the current stub form and displays the initial frm-
Main window. The advantage of using a stub form is that it permits us to run a com-
plete application that does not yet meet all of its final requirements. As each successive
form is developed, the display of the stub form can be replaced with a display of the
desired form. This incremental, or stepwise, refinement of the program is an extremely

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 110

2.6 Focus on Program Design and Implementation: Creating a Main Menu | 111

powerful development technique used by professional programmers. Another advantage
to this rapid application prototyping technique is that, as new features are required,
additional buttons can easily be added to the Main Menu form.

One modification that can be made to our Main Menu form is to have each button
call a single, centrally placed, general-purpose procedure that would then make the
choice of which form to hide and display based on the button pressed. We consider this
approach in Chapter 7 after both selection statements and general-purpose procedures
are presented. You will encounter both the current technique and the general-purpose
procedure technique in practice, and which one you adopt for your programs is more a
matter of style than substance.

Note: The Rotech Systems project, as it exists at the end of this section, can be
found on the website http://computerscience.jbpub.com/bronsonvbnet in the ROTECH2
folder as project rotech2. Note that rotech2 and all subsequent projects are also folders.

Exercises 2.6

1. Implement the two screens and the relationship between the two forms previously
shown in Figure 2–54. When a user presses the single button on the form with the
label Main Menu, the screen labeled Form A should appear. When the Return button
on Form A is pressed, the form labeled Main Menu should appear.

2. a. Implement the three screens and the relationship shown in the accompanying fig-
ure. The Main Menu form should have a single button that displays Form A.
Form A should have two buttons: one to return to the Main Menu and one to dis-
play Form B. Form B should also have two buttons: one to return control to Form
A and one to return control directly to the Main Menu.

b. Add a fourth form with the label Form C to the project created for Exercise 2a. This
form is to be displayed using a button on Form B. In this case, how many buttons
should Form B contain for controlling the display of forms? Note that when forms
are chained together in the manner shown, there are at most three buttons: one
button to “back up” one level and return to the immediately preceding screen, one
button to return directly to the Main Menu, and a third button to call the next form
in the chain. For multilevel forms, it is also convenient to provide a “hot key” (such
as the F10 function key that can be used on all forms) to return directly to the Main
Menu form. A second “hot key” (such as the F9 function key) always redisplays the
preceding form. (How to create this type of “hot key” is presented in Section 6.7.)

Main Menu

Display A

frmMain

Form A

Display
B

frmSecond

Main
Menu

Form B

Return
to A

frmThird

Main
Menu

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 111

112 | Chapter 2: Introduction to Visual Basic .NET

3. Either create the menu system developed in this section or locate and load the proj-
ect from the http://computerscience.jbpub.com/bronsonvbnet website (project rotech2
in the rotech2 folder).

4. a. Add a new form, with the following properties, to the Rotech project:
Object Property Setting
Form Name frmWalkIn

Text Walk In Processing Form
Button Name btnReturn

Text &Return to Main Menu
Label Name lblReturn

Text This Form is Under Development
Font MS Sans Serif, Bold, Size = 10

This new form’s button should return control to the Main Menu form when the
button is clicked.

b. Modify the Main Menu Walk In button’s Click event so that it displays the form
you created in Exercise 4a, rather than displaying the frmStub form.

5. (Case study)
For your selected case project (see project specifications at the end of Section 1.5),
complete the project’s initial TTL table and then create a working Main Menu that cor-
responds to the data in the completed table. Additionally, add an Under Development
stub form to the project and verify that a user can successfully cycle between forms.

2.7 Knowing About: The Help Facility

No matter how experienced you become at using Visual Basic, there will be times when
you’ll need some help in either performing a particular task, looking up the exact syn-
tax of a statement, or finding the parameters required by a built-in function. For these
tasks you can use Visual Basic’s Help Facility. Help includes the entire reference man-
ual, programming examples, and the complete Microsoft Development Network (MSDN)
Library.

To access the Help Facility, select either the Contents, Search, or Index options from
the Help menu, as shown in Figure 2–63. When any of these options is selected, the
screen shown in Figure 2–58 will be displayed.

Note that this main help window is divided into two panes. The left pane, which is
referred to as the Navigation pane, contains the three tabs labeled Contents, Index, and
Search. Each of these tabs provides a different way of accessing information from the
help facility, as summarized in Table 2–11. The right section, which is the Documenta-
tion pane, displays all information retrieved from the Library. Note on the left side the
words Filtered by. This should typically be set to Visual Basic and Related
when you’re developing a Visual Basic project.

As shown in Figure 2–64, the Contents tab, because it is on top of the other tabs, is
the currently active tab. This happened because the Contents option was selected from

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 112

2.7 Knowing About: The Help Facility | 113

Figure 2–63 The Help Menu Options

Table 2–11 The Help Tabs

Tab Description

Contents Displays a Table of Contents for the documentation. This table can be
expanded to display individual topic titles; double-clicking a title displays
the associated documentation in the Documentation pane.

Index Provides both a general index of topics and a text box for user entry of a
specific topic. Entering a topic causes focus to shift to the closest matching
topic within the general index. Double-clicking an index topic displays the
associated documentation in the Documentation pane.

Search Provides a means of entering a search word or phrase. All topics matching the
entered word(s) are displayed in a List box. Clicking on a topic displays the
corresponding documentation in the Documentation pane.

the Help menu (see Figure 2–64). If either the Index or Search options had been selected,
the same main help window would appear, except that the respective Index or Search
tab would be active. However, no matter which tab is currently active you can switch
from one tab to another by clicking on the desired tab.

The Contents Tab

The Contents tab provides a means of browsing through all of the available reference
material and technical articles contained within Visual Studio .NET, and specifically
within Visual Basic .NET. This tab provides a table of contents of all of the material and
displays the topics using the standard Windows tree view. For example, if you expand
the topic Visual Studio .NET shown in Figure 2–64 by clicking on the plus sign box [+],
and then expand the Introducing Visual Studio .NET topic, you will see the tree shown
in Figure 2–65. The information provided in the documentation pane was displayed by

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 113

114 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–64 The Main Help Window

double-clicking on the page highlighted in the Navigation pane. A hard copy of the dis-
played page is obtained by either selecting the Print option from the File menu or right-
clicking in the Documentation pane and selecting the Print option.

A very useful feature of the documentation is the hyperlink embedded within the
displayed documentation text. By positioning the mouse on underlined text and click-
ing, the referenced text will be displayed. This permits you to rapidly jump from topic to
topic, all while staying within the Documentation pane.

The Index Tab

As shown in Figure 2–66, the Index tab is on top of the other tabs, which makes it the
active tab. This tab operates much like an index in a book, with one major improve-
ment: In a book, after looking up the desired topic, you must manually turn to the refer-

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 114

2.7 Knowing About: The Help Facility | 115

Figure 2–65 Using the Contents Tab

enced page or pages. In the help facility, this “look up and display” is automatic once
you indicate the desired topic. Selection of the topic is accomplished by double-clicking
on an item within the list of topics contained in the list box (this is the box located at
the bottom of the tab). To locate a topic, you can either type the topic’s name within the
tab’s Keyword text box, which causes the item to be highlighted in the ListBox, or use
the scroll bar at the right of the list box to manually move to the desired item.

For example, in Figure 2–67, the topic AppendText Method has been typed in the
Look For: text box, and the list box entry for this topic has been selected. As each let-
ter is typed in the text box, the selected entry in the list box changes to match the input
letters as closely as possible. In this case, because there are multiple library entries for
the highlighted topic, if you double-click the highlighted topic, the Multiple Topics dia-
log box shown in Figure 2–68 appears. By double-clicking the desired item directly in

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 115

116 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–66 The Activated Index Tab

the list box, the documentation for the selected topic is displayed in the Documentation
area. Figure 2–69 illustrates the documentation for the item highlighted in Figure 2–68.

A useful feature of the help facility is that once you have selected and displayed the
desired topic, you can easily generate a hard copy of the information. This is accom-
plished by either selecting the Print item from the File menu button at the top of the
MSDN Library window, or by using the context menu provided by clicking the right
mouse button from within the displayed information.

The Search Tab

The Search tab, shown as the active tab in Figure 2–70, permits you to search for the
words entered in the tab’s text box in either the complete MSDN Library or sections of
it. When creating a search phrase, you should enclose a phrase within double quotes

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 116

2.7 Knowing About: The Help Facility | 117

Figure 2–67 The Index Tab with a Typed Entry

Figure 2–68 The Multiple Topics Dialog Box

and make use of Boolean operators to limit the search. For example, using the filter
“Visual Basic and Related,” a list of two topics was generated for the phrase “sqrt
method” when the List Topics button shown in Figure 2–70 was pressed. The double
quotes direct the search to look for the words “sqrt method” together. If the double
quotes are omitted, the search finds all occurrences of either the word “sqrt” or the word

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 117

118 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–69 The Documentation Display

“method,” and returns ten matches. The documentation shown in Figure 2–70 was dis-
played by clicking the second topic listed in the list box. As an aid to reading the help
text, it is sometimes useful to have the search words highlighted in the help text. This
can be accomplished by checking the box “Highlight search hits (in topics)” located
below the search button.

Dynamic Help

Dynamic Help is an excellent way to get information about the IDE and its features. The
Dynamic Help window displays a list of help topics that changes as you perform operations.
This window occupies the same location as the Properties window. If the Dynamic Help
window is not open, click Help on the menu bar and then click Dynamic Help. When you
click a word or component such as a form or control, links to relevant articles appear in the
Dynamic Help window. This window also has a toolbar that provides access to the
Contents, Index, and Search Help features. Figure 2–71 shows a Dynamic Help window.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 118

2.8 Common Programming Errors and Problems | 119

Figure 2–70 Using the Search Tab

Context-Sensitive Help

A quick way to view Help on any topic is to use context-sensitive Help. This is similar
to dynamic help, except that it immediately displays a relevant article rather than pre-
senting a list of articles. To use this facility, select an object such as a form or control
and press F1. You can also highlight a word in a line of code and press F1 to get infor-
mation on that topic.

2.8 Common Programming Errors and Problems

One of the most frustrating problems when learning Visual Basic is not being able to
locate all of the elements needed to create an application. For example, you may not
have the Form object, Toolbox, nor Properties window on the design screen. To bring up
the form, either retrieve an existing project or select New Project from the File menu

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 119

120 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–71 The Dynamic Help Window

(hot key sequence Alt+F, then N). To open the Toolbox object or the Properties window,
select the View option from the menu bar and then select the desired window.

A common error made by beginning programmers is forgetting to save a project at
periodic intervals at design time. Although you can usually forego periodic saves, every
experienced programmer knows the agony of losing work as a result of a variety of
mistakes or an unexpected power outage. To avoid this, you should develop the habit of
periodically saving your work.

2.9 Chapter Review

Key Terms
accelerator key
code module
Code window
button
comment
controls
design screen
design time

dialog box
empty string
event
executable statement
focus
form
Form module
graphical user interface

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 120

Test Yourself–Short Answer | 121

hot key
identifier
label
menu bar
methods
MessageBox.Show
nonexecutable statement

properties
run time
sizing handles
string
text box
toolbar
Toolbox

Summary
1. An object-oriented language permits the use and creation of new object types.
2. Visual Basic .NET is a true object-oriented language.
3. Event-based programs execute program code depending on what events occur,

which depends on what the user does.
4. GUIs are graphical user interfaces that provide the user with objects that recog-

nize events such as clicking a mouse.
5. An application is any program that can be run under a Windows Operating System.
6. The term design time refers to the period of time during which a Visual Basic

application is being developed under control of Visual Basic.
7. The term run time refers to the period of time when an application is executing.
8. A Visual Basic program consists of a visual part and a language part. The visual

part is provided by the objects used in the design of the graphical user interface,
whereas the language part consists of procedural code.

9. The basic steps in developing a visual basic program are:
a. Creating the GUI.
b. Setting the properties of each object on the interface.
c. Writing procedural code.

10. A form is used during design time to create a graphical user interface for a
Visual Basic application. At run time the form becomes a window.

11. The most commonly placed objects on a form are buttons, labels, and text boxes.
12. Each object placed on a form has a name property. Development teams may

choose guidelines for naming objects but in this book, form names begin with
the prefix frm, text boxes begin with txt, and buttons begin with btn. Names
must be chosen according to the following rules:
a. The first character of the name must be a letter.
b. Only letters, digits, or underscores may follow the initial letter. Blank spaces,

special characters, and punctuation marks are not allowed; use the underscore
or capital letters to separate words in an identifier consisting of multiple words.

c. A name can be no longer than 1016 characters.
d. A name should not be a keyword.

Test Yourself–Short Answer
1. A Visual Basic programmer works with the application in two modes: run time

and .

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 121

122 | Chapter 2: Introduction to Visual Basic .NET

Figure 2–72

2. The letters GUI are an acronym for .
3. There are two basic parts to a Visual Basic application; they are:

and .
4. At run time, a form becomes a .
5. Using the right-click mouse button will produce a .
6. List the three design steps required in creating a Visual Basic application.
7. What is the difference between the Name property and the Text property?
8. Write a Visual Basic statement to clear the contents of a text box named txtText1.
9. Write a Visual Basic statement to clear a form.

10. Write a Visual Basic statement to place the words “Welcome to Visual Basic” in
a text box named txtWelcome.

Programming Projects
Note: On all programming projects that you submit, include your name (or an identifi-
cation code, if you have been assigned one), and the project number in the lower left-
hand corner of the form.

1. a. Create the run time interface shown in Figure 2–72. The application should dis-
play the message “My first Visual Basic Program” in a text box when the first
button is clicked, and the message “Isn’t this neat?!?” when the second button
is clicked. Both messages should be in MS Sans Serif, 18 point, bold font.

b. (Extra Challenge) Make the label appear randomly on the form by using the
intrinsic function RND, the form’s Width and Height properties, and the
label’s Left property.

2. Create the form shown in Figure 2–73 that displays a label with the caption text
Hello World. The form should have four buttons. One button should have the
caption Invisible, and when this button is pressed the Hello World caption
should become invisible, but should have no effect on any other label. A second
button, with the caption New Message, should make the Hello World caption
invisible and display the text This is a New Message. Both messages should
be in MS Sans Serif, 14 point, bold font. The third button, with the caption

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 122

Programming Projects | 123

Figure 2–73

Reset, should make the Hello World caption reappear. Finally, an Exit button
should terminate the program.

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 123

24785_CH02_BRONSON.qrk 11/10/04 12:44 PM Page 124

